Positional cloning of candidate genes on chromosome 14 linked to early onset Alzheimer's disease

1994 ◽  
Vol 15 ◽  
pp. S149
1996 ◽  
Vol 2 (1) ◽  
pp. 3-6 ◽  
Author(s):  
Fuki M. Hisama ◽  
Gerard D. Schellenberg

Recent intensive work has highlighted the genetic basis of several forms of Alzheimer's disease (AD). Mutations in the amyloid precursor protein gene on chromosome 21 can cause either an early-onset autosomal dominant AD or hereditary cerebral hemorrhage with amyloidosis. On chromosome 14, a second gene associated with 70 to 90% early-onset familial AD (FAD) was identified by positional cloning in 1995. Still other kindreds show no linkage to either chromosome 21 or chromosome 14; the third locus (on chromosome 1) was recently identified in affected descendants of a group of families known as the Volga Germans. In late-onset (age >65 years) AD, the apolipoprotein E gene allele ∊e4 on chromosome 19 has clearly been shown to be a risk factor for the development of AD and appears to modify the age of onset of the disease. The emerging picture is that AD is a genetically complex, heterogeneous disorder. Precisely how these genetic factors interact with each other and with other yet-to-be-identified genetic and nongenetic (environmental) factors to produce the clinical and pathologic findings in AD remains to be elucidated. The Neuroscientist 2:3–6, 1996


2014 ◽  
Author(s):  
Joseph P. Barsuglia ◽  
Michelle J. Mather ◽  
Hemali V. Panchal ◽  
Aditi Joshi ◽  
Elvira Jimenez ◽  
...  

2018 ◽  
Author(s):  
Natalia Acosta-Baena ◽  
Carlos Mario Lopera-Gómez ◽  
Mario César Jaramillo-Elorza ◽  
Margarita Giraldo-Chica ◽  
Mauricio Arcos-Burgos ◽  
...  

2020 ◽  
Vol 17 (5) ◽  
pp. 438-445
Author(s):  
Van Giau Vo ◽  
Jung-Min Pyun ◽  
Eva Bagyinszky ◽  
Seong S.A. An ◽  
Sang Y. Kim

Background: Presenilin 1 (PSEN1) was suggested as the most common causative gene of early onset Alzheimer’s Disease (AD). Methods: Patient who presented progressive memory decline in her 40s was enrolled in this study. A broad battery of neuropsychological tests and neuroimaging was applied to make the diagnosis. Genetic tests were performed in the patient to evaluate possible mutations using whole exome sequencing. The pathogenic nature of missense mutation and its 3D protein structure prediction were performed by in silico prediction programs. Results: A pathogenic mutation in PSEN1 (NM_000021.3: c.1027T>C p.Ala285Val), which was found in a Korean EOAD patient. Magnetic resonance imaging scan showed mild left temporal lobe atrophy. Hypometabolism appeared through 18F-fludeoxyglucose Positron Emission Tomography (FDG-PET) scanning in bilateral temporal and parietal lobe, and 18F-Florbetaben-PET (FBB-PET) showed increased amyloid deposition in bilateral frontal, parietal, temporal lobe and hence presumed preclinical AD. Protein modeling showed that the p.Ala285Val is located in the random coil region and could result in extra stress in this region, resulting in the replacement of an alanine residue with a valine. This prediction was confirmed previous in vitro studies that the p.Trp165Cys resulted in an elevated Aβ42/Aβ40 ratio in both COS-1 and HEK293 cell lines compared that of wild-type control. Conclusion: Together, the clinical characteristics and the effect of the mutation would facilitate our understanding of PSEN1 in AD pathogenesis for the disease diagnosis and treatment. Future in vivo study is needed to evaluate the role of PSEN1 p.Ala285Val mutation in AD progression.


Sign in / Sign up

Export Citation Format

Share Document