Catalytic activity of the 1:1:1 Zn, Cr and Fe mixed oxide: Mechanistic study of the ketonization of acetic acid

1987 ◽  
Vol 16 (1) ◽  
pp. 17-29 ◽  
Author(s):  
S. Rajadurai ◽  
J.C. Kuriacose
2013 ◽  
Vol 15 (2) ◽  
pp. 107-111 ◽  
Author(s):  
D. Kungumathilagam ◽  
K. Karunakaran

Developing catalyst is very significant for biologically important reactions which yield products, used as drugs. Mechanistic study on meso-tetraphenylporphyriniron(III) chloride (TPP) catalysed oxidation of indole by sodium perborate in aqueous acetic acid medium have been carried out. The reaction follows a fractional order with respect to substrate and catalyst. The order with respect to oxidant was found to be one. Increase in the percentage of acetic acid and increase in the concentration of [H+] decreased the rate. The reaction fails to initiate polymerization, and a radical mechanism is ruled out. Activation and thermodynamic parameters have been computed. A suitable kinetic scheme based on these observations has been proposed. Significant catalytic activity is observed for the reaction system in the presence of TPP.


2007 ◽  
Vol 55 (12) ◽  
pp. 189-193 ◽  
Author(s):  
C. Maugans ◽  
B. Kumfer

Wet oxidation tests were performed on two pure compound streams: acetic acid and ammonia; and on two wastewater streams: acrylic acid wastewater and sulphide laden spent caustic. Test results showed that Mn/Ce and Pt/TiO2 were effective catalysts that greatly enhanced acetic acid, ammonia and acrylic acid wastewater destruction. However, the Mn/Ce catalyst performance appears to be inhibited by concentrated salts dissolved in solution. This could limit the applicability of this catalyst for the treatment of brackish wastewaters. Zr, Ce and Ce nanoparticles were also shown to exhibit some catalytic activity, however not to the extent of the Mn/Ce and the Pt/TiO2.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
S. Shree Devi ◽  
B. Muthukumaran ◽  
P. Krishnamoorthy

Kinetics and mechanism of oxidation of substituted 5-oxoacids by sodium perborate in aqueous acetic acid medium have been studied. The reaction exhibits first order both in [perborate] and [5-oxoacid] and second order in [H+]. Variation in ionic strength has no effect on the reaction rate, while the reaction rates are enhanced on lowering the dielectric constant of the reaction medium. Electron releasing substituents in the aromatic ring accelerate the reaction rate and electron withdrawing substituents retard the reaction. The order of reactivity among the studied 5-oxoacids is p-methoxy ≫ p-methyl > p-phenyl > –H > p-chloro > p-bromo > m-nitro. The oxidation is faster than H2O2 oxidation. The formation of H2BO3+ is the reactive species of perborate in the acid medium. Activation parameters have been evaluated using Arrhenius and Eyring’s plots. A mechanism consistent with the observed kinetic data has been proposed and discussed. Based on the mechanism a suitable rate law is derived.


Catalysts ◽  
2018 ◽  
Vol 8 (9) ◽  
pp. 370
Author(s):  
Juan Jimenez ◽  
Kathleen Mingle ◽  
Teeraya Bureerug ◽  
Cun Wen ◽  
Jochen Lauterbach

The catalytic performance of Mo8V2Nb1-based mixed-oxide catalysts for ethane partial oxidation is highly sensitive to the doping of elements with redox and acid functionality. Specifically, control over product distributions to ethylene and acetic acid can be afforded via the specific pairing of redox elements (Pd, Ni, Ti) and acid elements (K, Cs, Te) and the levels at which these elements are doped. The redox element, acid element, redox/acid ratio, and dopant/host ratio were investigated using a three-level, four-factor factorial screening design to establish relationships between catalyst composition, structure, and product distribution for ethane partial oxidation. Results show that the balance between redox and acid functionality and overall dopant level is important for maximizing the formation of each product while maintaining the structural integrity of the host metal oxide. Overall, ethylene yield was maximized for a Mo8V2Nb1Ni0.0025Te0.5 composition, while acetic acid yield was maximized for a Mo8V2Nb1Ti0.005Te1 catalyst.


2013 ◽  
Vol 457-458 ◽  
pp. 139-143 ◽  
Author(s):  
Ming Tian Wang ◽  
Chang Ping Pan ◽  
Wei Peng Gai ◽  
Xiao Xia Lv ◽  
Min Gang Zhai ◽  
...  

A series of novel acidic ionic liquid: 1-ethyl-2-alkyl-benzimidazolium tetra-fluoroborate (alkyl= Et, Pr-n, Bu-n) were prepared by simple acid-based neutralization of 1-ethyl-2-alkyl-benzimidazole and tetrafluoroboric acid. The compounds were characterized by FTIR spectra, elemental analysis,1HNMR spectra and thermogravimetric analysis. These novel tetra-fluoroborate salts show good catalytic activity to esterification of benzyl alcohol and acetic acid. Furthermore, a crystal of ([H-ebBiBF4) was prepared with the crystal structure and determined by X-ray diffraction analysis. The molecular is of lamellar structure as mainly π electron ring is stacked interleaving between two layers. The results of cation and anion arranged orderly in pair indicate that the coulombic attraction is more dominant. Simultaneously, the weak local hydrogen bonds C-H···F exist in the molecules.


2017 ◽  
Vol 49 (6) ◽  
pp. 438-454 ◽  
Author(s):  
Mohammad Naved Khan ◽  
Ommer Bashir ◽  
Tabrez Alam Khan ◽  
Shaeel Ahmed Al-Thabaiti ◽  
Zaheer Khan

Materials ◽  
2019 ◽  
Vol 12 (6) ◽  
pp. 878 ◽  
Author(s):  
Abdallah Zedan ◽  
Amina AlJaber

In this study, xCuO-CeO2 mixed oxide catalysts (Cu weight ratio x = 1.5, 3, 4.5, 6 and 15 wt.%) were prepared using solution combustion synthesis (SCS) and their catalytic activities towards the methane (CH4) oxidation reaction were studied. The combustion synthesis of the pure CeO2 and the CuO-CeO2 solid solution catalysts was performed using copper and/or cerium nitrate salt as an oxidizer and citric acid as a fuel. A variety of standard techniques, including scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), thermo-gravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy were employed to reveal the microstructural, crystal, thermal and electronic properties that may affect the performance of CH4 oxidation. The CuO subphase was detected in the prepared solid solution and confirmed with XRD and Raman spectroscopy, as indicated by the XRD peaks at diffraction angles of 35.3° and 38.5° and the Ag Raman mode at 289 cm−1, which are characteristics of tenorite CuO. A profound influence of Cu content was evident, not only affecting the structural and electronic properties of the catalysts, but also the performance of catalysts in the CH4 oxidation. The presence of Cu in the CeO2 lattice obviously promoted its catalytic activity for CH4 catalytic oxidation. Among the prepared catalysts, the 6% CuO-CeO2 catalyst demonstrated the highest performance, with T50 = 502 °C and T80 = 556 °C, an activity that is associated with the availability of a fine porous structure and the enhanced surface area of this catalyst. The results demonstrate that nanocrystalline copper-ceria mixed oxide catalysts could serve as an inexpensive and active material for CH4 combustion.


2019 ◽  
Vol 2 (1) ◽  
Author(s):  
Chengyu Jin ◽  
Lei Ma ◽  
Wenjing Sun ◽  
Peiwei Han ◽  
Xiangdong Tan ◽  
...  

AbstractSingle-atom confined materials (SACMs) have been widely researched as catalysts in many fields within recent years. However, this class of materials may not only serve as a catalyst but also as a support material for certain reactions. Here we propose a general strategy to use SACMs as supports for tuning loaded noble metal (e.g., Ru) nanoparticles with enhanced catalytic activity. As a proof of concept, a nickel single-atom confined nitrogen-doped carbon nanotube (NCNT) superstructure is prepared as a support to load noble metal Ru for catalytic wet air oxidation of acetic acid. Improved catalytic activity with a mineralization rate of ~97.5% is achieved. Further, adsorption configurations based on DFT calculations also confirm our deduction that the introduction of single-atom Ni changes the intrinsic property of NCNTs and affects the loaded active Ru nanoparticles.


Sign in / Sign up

Export Citation Format

Share Document