The universe and the origin of life on the earth (origin of organics on clays)

1989 ◽  
Vol 9 (2) ◽  
pp. 99-103 ◽  
Author(s):  
M.D. Nussinov ◽  
V.I. Maron
1989 ◽  
Vol 116 (1) ◽  
pp. 439-462
Author(s):  
Joseph N. Marcus ◽  
Margaret A. Olsen

AbstractOrganic chemicals — compounds that contain carbon — are the substance of life and pervade the universe. Is there a connection between comets, which are rich in prebiotic organics, and the origin of life? Current concepts of biomolecular evolution are first reviewed, including the important paradigm of catalytic RNA. At the very least, impacting comets appear to have supplied a substantial fraction of the volatile elements required for life shortly after the Earth formed. Some impacting material may even have survived chemically intact to directly provide necessary complex prebiotic organic chemicals. For life to originate and evolve in comets themselves, liquid H2O would be absolutely required: arguments for and against 26Al radiogenic melting of cometary cores are presented. Cometary panspermia, if theoretically possible, is not necessary to explain the origin of life on Earth. The Halley spacecraft provide evidence against Earth-type microorganisms in this comet’s dust.


Symmetry ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2277
Author(s):  
Ferdinand Devínsky

The origin of life, based on the homochirality of biomolecules, is a persistent mystery. Did life begin by using both forms of chirality, and then one of the forms disappeared? Or did the choice of homochirality precede the formation of biomolecules that could ensure replication and information transfer? Is the natural choice of L-amino acids and D-sugars on which life is based deterministic or random? Is the handedness present in/of the Universe from its beginning? The whole biosystem on the Earth, all living creatures are chiral. Many theories try to explain the origin of life and chirality on the Earth: e.g., the panspermia hypothesis, the primordial soup hypothesis, theory of parity violation in weak interactions. Additionally, heavy neutrinos and the impact of the fact that only left-handed particles decay, and even dark matter, all have to be considered.


2006 ◽  
pp. 147-198
Author(s):  
Jordi Llorca ◽  
Malcolm E. Schrader ◽  
Pasquale Stano ◽  
Francesca Ferri ◽  
Pier Luigi Luisi

N. C. Wickramasinghe ( Department of Applied Mathematics and Astronomy, University College, Cardiff, U. K. ). The question of the origin of life is, of course, one of the most important scientific questions and it is also one of the most difficult. One is inevitably faced here with a situation where there are very few empirical facts of direct relevance and perhaps no facts relating to the actual transition from organic material to material that can even remotely be described as living. The time perspective of events that relate to this problem has already been presented by Dr Chang. Uncertainty still persists as to the actual first moment of the origin or the emergence of life on the Earth. At some time between 3800 and 3300 Ma BP the first microscopic living systems seem to have emerged. There is a definite moment in time corresponding to a sudden appearance of cellular-type living systems. Now, traditionally the evolution of carbonaceous compounds which led to the emergence of life on Earth could be divided into three principal steps and I shall just remind you what those steps are. The first step is the production of chemical building blocks that lead to the origin of the organic molecules necessary as a prerequisite for the evolution of life. Step two can be described in general terms as prebiotic evolution, the arrangement of these chemical units into some kind of sequence of precursor systems that come almost up to life but not quite; and then stage three is the early biological evolution which actually effects the transition from proto-cellular organic-type forms into truly cellular living systems. The transition is from organic chemistry, prebiotic chemistry to biochemistry. Those are the three principal stages that have been defined by traditional workers in the field, the people who, as Dr Chang said, have had the courage to make these queries and attempt to answer them. Ever since the classic experiments where organic materials were synthesized in the laboratory a few decades back, it was thought that the first step, the production of organic chemical units, is important for the origin of life on the Earth, and that this had to take place in some location on the Earth itself.


2002 ◽  
Vol 11 ◽  
pp. 179-194
Author(s):  
David W. Deamer

Movies are the myths of late-20th century western culture. Because of the power of films likeETto capture our imagination, we are more likely than past generations to accept the possibility that life exists elsewhere in our galaxy. Such a myth can be used to sketch the main themes of this chapter, which concern the origin of life on the Earth.


2007 ◽  
Vol 6 (3) ◽  
pp. 241-248 ◽  
Author(s):  
J. Chela-Flores

AbstractWe discuss whether it is possible to test the universality of biology, a quest that is of paramount relevance for one of its most recent branches, namely astrobiology. We review this topic in terms of the relative roles played on the Earth biota by contingency and evolutionary convergence. Following the seminal contribution of Darwin, it is reasonable to assume that all forms of life known to us so far are not only terrestrial, but are descendants of a common ancestor that evolved on this planet at the end of a process of chemical evolution. We also raise the related question of whether the molecular events that were precursors to the origin of life on Earth are bound to occur elsewhere in the Universe, wherever the environmental conditions are similar to the terrestrial ones. We refer to ‘cosmic convergence’ as the possible occurrence elsewhere in the Universe of Earth-like environmental conditions. We argue that cosmic convergence is already suggested by observational data. The set of hypotheses for addressing the question of the universality of biology can be tested by future experiments that are feasible with current technology. We focus on landing on Europa and the broader implications of selecting the specific example of the right landing location. We have previously discussed the corresponding miniaturized equipment that is already in existence. The significance of these crucial points needs to be put into a wider scientific perspective, which is one of the main objectives of this review.


2010 ◽  
Vol 10 (2) ◽  
pp. 83-98 ◽  
Author(s):  
Carl H. Gibson ◽  
Rudolph E. Schild ◽  
N. Chandra Wickramasinghe

AbstractThe origin of life and the origin of the Universe are among the most important problems of science and they might be inextricably linked. Hydro-gravitational-dynamics cosmology predicts hydrogen–helium gas planets in clumps as the dark matter of galaxies, with millions of planets per star. This unexpected prediction is supported by quasar microlensing of a galaxy and a flood of new data from space telescopes. Supernovae from stellar over-accretion of planets produce the chemicals (C, N, O, P, etc.) and abundant liquid-water domains required for first life and the means for wide scattering of life prototypes. Life originated following the plasma-to-gas transition between 2 and 20 Myr after the big bang, while planetary core oceans were between critical and freezing temperatures, and interchanges of material between planets constituted essentially a cosmological primordial soup. Images from optical, radio and infrared space telescopes suggest life on Earth was neither first nor inevitable.


Life ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 976
Author(s):  
Craig Robert Walton ◽  
Oliver Shorttle

Compartmentalisation by bioenergetic membranes is a universal feature of life. The eventual compartmentalisation of prebiotic systems is therefore often argued to comprise a key step during the origin of life. Compartments may have been active participants in prebiotic chemistry, concentrating and spatially organising key reactants. However, most prebiotically plausible compartments are leaky or unstable, limiting their utility. Here, we develop a new hypothesis for an origin of life environment that capitalises upon, and mitigates the limitations of, prebiotic compartments: multi-compartmentalised layers in the near surface environment—a ’scum’. Scum-type environments benefit from many of the same ensemble-based advantages as microbial biofilms. In particular, scum layers mediate diffusion with the wider environments, favouring preservation and sharing of early informational molecules, along with the selective concentration of compatible prebiotic compounds. Biofilms are among the earliest traces imprinted by life in the rock record: we contend that prebiotic equivalents of these environments deserve future experimental investigation.


Sign in / Sign up

Export Citation Format

Share Document