Changes in HLA, A,B,C expression during “spontaneous” transformation of human urothelial cells in vitro

1987 ◽  
Vol 23 (7) ◽  
pp. 991-995 ◽  
Author(s):  
Svend S. Ottesen ◽  
Jørgen Kieler ◽  
Britta Christensen
2021 ◽  
pp. 088532822110309
Author(s):  
Jinhua Hu ◽  
Bin Ai ◽  
Shibo Zhu ◽  
Zhen Wang ◽  
Huimin Xia ◽  
...  

To investigate the biocompatibility of polylactic acid-glycolic acid copolymer (PLGA) and PLGA/gelatin scaffolds and their suitability for tubular urethral replacement in a canine model. PLGA and PLGA/gelatin scaffolds was constructed by electrospinning. Microstructural differences between the scaffolds was examined by Scanning electron microscopy (SEM) followed by mechanical properties testing. Biocompatibility of the material was evaluated using SEM 4, 8, 12 and 72 h after PLGA and PLGA/gelatin scaffolds co-culture with urothelial cells. And confocal analysis was also used to showed the cell adhesive and growth at 12 h. Approximately 2 cm of the anterior urethra of twelve dogs were removed and replaced with a scaffold. After the surgery for 1 month performed urethrography and for 3 month perform hematoxylin–eosin (H&E) and Masson. The results indicated that PLGA and PLGA/gelatin scaffolds had a void microfilament structure, similar to that of normal acellular matrix tissue. And the tensile strength was decreased whereas the tensile deformation and suture retention strength was increased in PLGA/gelatin scaffolds compared to that in PLGA scaffolds Urothelial cells grew well on both scaffolds. Postoperatively, animals recovered well and urinated spontaneously. However, urethrography showed varying degrees of urethral strictures in the reconstructed urethras. H&E and Masson showed that multilayer urothelial cells were formed in both the proximal and distal segments of the reconstructed urethras but without continuity. There was a small amount of smooth muscle and blood vessels under the epithelium, but regenerative urothelial cells at the midpoint of the reconstructed segment did not continue. Lots of lymphocyte infiltration was observed under the epithelium, some collagen tissue was deposited under the neo-urethral epithelium were observed. In conclusion, PLGA and PLGA/gelatin scaffolds are not suitable for tubularized urethral replacement in the canine model.


2009 ◽  
Vol 48 (8) ◽  
pp. 694-710 ◽  
Author(s):  
Emma J. Chapman ◽  
Sarah V. Williams ◽  
Fiona M. Platt ◽  
Carolyn D. Hurst ◽  
Philip Chambers ◽  
...  

1998 ◽  
Vol 550 ◽  
Author(s):  
Y. Senuma ◽  
S. Franceschin ◽  
J. G. Hilborn ◽  
P. Tissiéres ◽  
P. Frey

AbstractA new approach to the vesico-ureteral reflux could be a local regeneration of the defective vesicoureteral junction by transplanting living cells to the target site. The aim of this work is to provide a long-term effective treatment by producing bioresorbable microspheres which can act as support matrix for those cells, with the goal of an in vivo transfer of the in vitro cultured cells with a minimal surgical procedure. After microsphere degradation, the cells should be integrated into the muscular structure of the junction. Most innovative is that these are cultured muscle and urothelial cells from the bladder of the same patient.


1988 ◽  
Vol 106 (3) ◽  
pp. 761-771 ◽  
Author(s):  
P Boukamp ◽  
R T Petrussevska ◽  
D Breitkreutz ◽  
J Hornung ◽  
A Markham ◽  
...  

In contrast to mouse epidermal cells, human skin keratinocytes are rather resistant to transformation in vitro. Immortalization has been achieved by SV40 but has resulted in cell lines with altered differentiation. We have established a spontaneously transformed human epithelial cell line from adult skin, which maintains full epidermal differentiation capacity. This HaCaT cell line is obviously immortal (greater than 140 passages), has a transformed phenotype in vitro (clonogenic on plastic and in agar) but remains nontumorigenic. Despite the altered and unlimited growth potential, HaCaT cells, similar to normal keratinocytes, reform an orderly structured and differentiated epidermal tissue when transplanted onto nude mice. Differentiation-specific keratins (Nos. 1 and 10) and other markers (involucrin and filaggrin) are expressed and regularly located. Thus, HaCaT is the first permanent epithelial cell line from adult human skin that exhibits normal differentiation and provides a promising tool for studying regulation of keratinization in human cells. On karyotyping this line is aneuploid (initially hypodiploid) with unique stable marker chromosomes indicating monoclonal origin. The identity of the HaCaT line with the tissue of origin was proven by DNA fingerprinting using hypervariable minisatellite probes. This is the first demonstration that the DNA fingerprint pattern is unaffected by long-term cultivation, transformation, and multiple chromosomal alterations, thereby offering a unique possibility for unequivocal identification of human cell lines. The characteristics of the HaCaT cell line clearly document that spontaneous transformation of human adult keratinocytes can occur in vitro and is associated with sequential chromosomal alterations, though not obligatorily linked to major defects in differentiation.


1971 ◽  
Vol 13 (1) ◽  
pp. 9-13 ◽  
Author(s):  
C. C. Lin ◽  
T. D. Chang ◽  
Virginia Niewczas-Late

A male Chinese hamster cell line has been established through spontaneous transformation in a skin culture. Chromosome studies at passage 13 revealed one major and one minor type of pseudodiploid cells (77.3 and 20%). At passage 42, only the major subline persisted (78%). The two sublines, especially the major one, had selective advantage over other cell types in this cell line probably because they were more nearly genetically balanced. Autoradiographic studies indicated no overall increase in late replicating chromosomal elements in the two sublines. Both cell types lacked the X chromosome and chromosome 6, but they were largely compensated for by the presence of new marker chromosomes. However, more chromosomal material was missing in the minor type than in the major type, and this may account for the lower adaptability of the former.


2013 ◽  
Vol 7 (1-2) ◽  
pp. 4 ◽  
Author(s):  
Annie Imbeault ◽  
Geneviève Bernard ◽  
Alexandre Rousseau ◽  
Amélie Morissette ◽  
Stéphane Chabaud ◽  
...  

Introduction: Many efforts are used to improve surgical techniques and graft materials for urethral reconstruction. We developed an endothelialized tubular structure for urethral reconstruction.Methods: Two tubular models were created in vitro. Human fibroblasts were cultured for 4 weeks to form fibroblast sheets. Then, endothelial cells (ECs) were seeded on the fibroblast sheets and wrapped around a tubular support to form a cylinder for the endothelialized tubular urethral model (ET). No ECs were added in the standard tubular model (T). After 21 days of maturation, urothelial cells were seeded into the lumen of both models. Constructs were placed under perfusion in a bioreactor for 1 week. At several times,histology and immunohistochemistry were performed on grafted nude mice to evaluate the impact of ECs on vascularization.Results: Both models produced an extracellular matrix, without exogenous material, and developed a pseudostratified urothelium. Seven days after the graft, mouse red blood cells were present only in the outer layers in T model, but in the full thickness of ET model. After 14 days, erythrocytes were present in both models, but in a greater proportion in ET model. At day 28, both models were well-vascularized, with capillary-like structures in the wholethickness of the tubes.Conclusion: Incorporating endothelial cells was associated with an earlier vascularization of the grafts, which could decrease the necrosis of the transplanted tissue. As those models can be elaborated with the patient’s cells, this tubular urethral graft would be unique in its autologous property.


1989 ◽  
Vol 2 (S3) ◽  
pp. 8-8
Author(s):  
J. Kieler
Keyword(s):  

Science ◽  
1972 ◽  
Vol 176 (4042) ◽  
pp. 1420-1422 ◽  
Author(s):  
J. Hooks ◽  
C. J. Gibbs ◽  
H. Chopra ◽  
M. Lewis ◽  
D. C. Gajdusek

Sign in / Sign up

Export Citation Format

Share Document