Ultrasonic absorption and attenuation in mammalian tissues

1979 ◽  
Vol 5 (2) ◽  
pp. 181-186 ◽  
Author(s):  
S.A. Goss ◽  
L.A. Frizzell ◽  
F. Dunn
1978 ◽  
Vol 63 (S1) ◽  
pp. S13-S13
Author(s):  
S. A. Goss ◽  
L. A. Frizzell ◽  
F. Dunn

Author(s):  
W. E. Rigsby ◽  
D. M. Hinton ◽  
V. J. Hurst ◽  
P. C. McCaskey

Crystalline intracellular inclusions are rarely seen in mammalian tissues and are often difficult to positively identify. Lymph node and liver tissue samples were obtained from two cows which had been rejected at the slaughter house due to the abnormal appearance of these organs in the animals. The samples were fixed in formaldehyde and some of the fixed material was embedded in paraffin. Examination of the paraffin sections with polarized light microscopy revealed the presence of numerous crystals in both hepatic and lymph tissue sections. Tissue sections were then deparaffinized in xylene, mounted, carbon coated, and examined in a Phillips 505T SEM equipped with a Tracor Northern X-ray Energy Dispersive Spectroscopy (EDS) system. Crystals were obscured by cellular components and membranes so that EDS spectra were only obtainable from whole cells. Tissue samples which had been fixed but not paraffin-embedded were dehydrated, embedded in Spurrs plastic, and sectioned.


Author(s):  
Chi-Ming Wei ◽  
Margarita Bracamonte ◽  
Shi-Wen Jiang ◽  
Richard C. Daly ◽  
Christopher G.A. McGregor ◽  
...  

Nitric oxide (NO) is a potent endothelium-derived relaxing factor which also may modulate cardiomyocyte inotropism and growth via increasing cGMP. While endothelial nitric oxide synthase (eNOS) isoforms have been detected in non-human mammalian tissues, expression and localization of eNOS in the normal and failing human myocardium are poorly defined. Therefore, the present study was designed to investigate eNOS in human cardiac tissues in the presence and absence of congestive heart failure (CHF).Normal and failing atrial tissue were obtained from six cardiac donors and six end-stage heart failure patients undergoing primary cardiac transplantation. ENOS protein expression and localization was investigated utilizing Western blot analysis and immunohistochemical staining with the polyclonal rabbit antibody to eNOS (Transduction Laboratories, Lexington, Kentucky).


1996 ◽  
Vol 42 (7) ◽  
pp. 1092-1099 ◽  
Author(s):  
H M Qazzaz ◽  
S A Jortani ◽  
J M Poole ◽  
R Valdes

Abstract Digoxin-like immunoreactive factor (DLIF) from adrenal glands is an endogenous ligand structurally related to the plant-derived cardiac glycoside digoxin. Cardiac glycosides regulate the activity of the sodium pump and thus play key roles in disease processes involving regulation of ion transport. We now report the discovery of an endogenous dihydro-DLIF analogous to dihydrodigoxin. We used HPLC, ultraviolet spectrophotometry, and cross-reactivity with two antibodies, one specific for digoxin and one for dihydrodigoxin, to support the hypothesis that dihydro-DLIF contains a chemically reduced lactone ring. The spectral absorbance maximum for dihydro-DLIF is at 196 nm, identical to dihydrodigoxin. DLIF and dihydro-DLIF are 975- and 2588-fold less immunoreactive than digoxin and dihydrodigoxin for their respective antibodies. The molar ratio of dihydro-DLIF to DLIF is approximately 5.3 in bovine adrenocortical tissue and approximately 0.38 in human serum. Dihydrodigoxin (reduced lactone ring) added to microsomes isolated from bovine adrenal cortex produced a 4.5-fold increase in digoxin-like immunoreactivity (oxidized lactone ring) after 3 h of incubation. The biotransformation is likely mediated by a cytochrome P-450 NADPH-dependent process. Our findings demonstrate the presence of a dihydro-DLIF in mammals and suggest a metabolic route for synthesis of endogenous DLIF in mammalian tissue.


1978 ◽  
Vol 253 (8) ◽  
pp. 2518-2521
Author(s):  
J.F. Kuo ◽  
N.L. Brackett ◽  
M. Shoji ◽  
J. Tse
Keyword(s):  

2020 ◽  
Vol 4 (Supplement_1) ◽  
pp. 742-742
Author(s):  
Judith Campisi

Abstract Cellular senescence is a complex cell fate, often induced by stress or damage, that can be beneficial or deleterious, depending on the physiological context and age of the organism. A prominent feature of senescent cells is a multi-faceted senescence-associated secretory phenotype (SASP), which includes growth factors, cytokine and chemokines, growth factors, proteases, bioactive lipids and metabolites. Senescent cells increase with age in most, if not all, mammalian tissues. Through the use of transgenic mouse models, senescent cells are now known to causally drive numerous age-related pathologies, largely through the SASP. Eliminating senescent cells, genetically or through the use of senolytic/senomorphic agents, can improve the health span, at least in mice, and hold promise for extension to humans in the near future.


Author(s):  
Andreas Baumer ◽  
Sandra Jäsch ◽  
Nadin Ulrich ◽  
Ingo Bechmann ◽  
Julia Landmann ◽  
...  

1965 ◽  
Vol 240 (2) ◽  
pp. 733-739 ◽  
Author(s):  
Yasutomi Nishizuka ◽  
Arata Ichiyama ◽  
R.K. Gholson ◽  
Osamu Hayaishi

Sign in / Sign up

Export Citation Format

Share Document