Geochemistry of the early proterozoic metasedimentary rocks of the alligator rivers region, Northern Territory, Australia

1985 ◽  
Vol 29 (4) ◽  
pp. 331-357 ◽  
Author(s):  
G.R. Ewers ◽  
N.C. Higgins
1991 ◽  
Vol 28 (6) ◽  
pp. 899-911 ◽  
Author(s):  
George E. Gehrels ◽  
William C. McClelland ◽  
Scott D. Samson ◽  
P. Jonathan Patchett ◽  
David A. Brew

U–Pb geochronologic studies demonstrate that steeply dipping, sheetlike tonalitic plutons along the western margin of the northern Coast Mountains batholith were emplaced between ~83 and ~57 (perhaps ~55) Ma. Less elongate tonalitic–granodioritic bodies in central portions of the batholith yield ages of 59–58 Ma, coeval with younger phases of the tonalitic sheets. Large granite–granodiorite bodies in central and eastern portions of the batholith were emplaced at 51–48 Ma. Trends in ages suggest that the tonalitic bodies generally become younger southeastward and that, at the latitude of Juneau, plutonism migrated northeastward across the batholith at ~0.9 km/Ma. Variations in the age, shape, location, and degree of fabric development among the various plutons indicate that Late Cretaceous – Paleocene tonalitic bodies were emplaced into a steeply dipping, dip-slip shear zone that was active along the western margin of the batholith. Postkinematic Eocene plutons were emplaced at shallow crustal levels. Inherited zircon components in these plutons range in age from mid-Paleozoic to Early Proterozoic and are coeval with detrital zircons in adjacent metasedimentary rocks. These old zircons, combined with evolved Nd isotopic signatures for most plutons, record assimilation of continental crustal or supracrustal rocks during the generation and (or) ascent of the plutons.


Author(s):  
Eirik J. Krogstad ◽  
Richard J. Walker

ABSTRACT:The Early Proterozoic (1715 Ma) Harney Peak Granite (Black Hills, SD, U.S.A.) is a complex of hundreds of dykes and sills. Earlier studies of Nd, O and Pb isotope variations demonstrated that the complex was not derived from a single source, or even different sources of a single age. Instead, the granites can be divided into a group with sources probably dominated by Early Proterozoic sediments and a group with sources probably dominated by Archean sediments. New results on the Nd isotopic variations of many additional samples indicate that there is considerable overlap between Nd isotopic compositions within the complex. Values of εNd (1715 Ma) of the Harney Peak Granite suite (n = 20) range from −2·0, indicating an Early Proterozoic (2300-2200 Ma) crustal source, to −13·4, indicating a Middle to Late Archean (3200-3100 Ma) protolith. These results suggest that the Early Proterozoic source may have included rocks such as the c. 2200-1900 Ma metasedimentary rocks that occur in the southern Black Hills. The Archean sources might have included rocks such as those exposed on the periphery of the Black Hills. The range in Nd model ages negates the usefulness of the concept of the ‘average’ age of the crust in this part of the craton. Because such heterogeneity is present in the magmatic compositions of the Harney Peak Granite, it can be inferred that at least as much heterogeneity was present in the sources. In this granite system, melts were evidently derived from isolated, heterogeneous zones and did not have the opportunity to coalesce into large magma bodies. In systems where coalescence does occur, the evidence for such highly heterogeneous sources may be lost. These results emphasise that inferences drawn from a few samples of plutonic rocks in which magma mixing and homogenisation occurred can lead to erroneous conclusions about the age and nature of protoliths and, consequently, the development of continental crust.


1991 ◽  
Vol 28 (8) ◽  
pp. 1254-1270 ◽  
Author(s):  
Gerald M. Ross ◽  
Randall R. Parrish

We address two problems of Cordilleran geology in this study using U–Pb dating of single detrital zircon grains from metasedimentary rocks: the provenance of the Windermere Supergroup, and the age and correlation of metasedimentary rocks within the Shuswap Complex that are at high metamorphic grade. Because some of these rocks are clearly of North American affinity, the ages of zircons provide indirect constraints on the age and distribution of continental basement from which the zircons were derived.A consistent pattern emerges from ages of about 50 grains from six rocks. Nearly all samples analyzed (48–53°N) are characterized by a bimodal distribution of zircon ages of 1.65–2.16 Ga and > 2.5 Ga, with a distinct lack of ages between 2.1 and 2.5 Ga. Exceptions to this pattern are young zircons from two samples, from Valhalla and Grand Forks – Kettle complexes of southeastern British Columbia, that have grains 1435 ± 35 and 650 ± 15 Ma, respectively. These younger grains are inferred to have been derived from magmatic rocks, and they have no obvious source in either the Canadian Shield or the Alberta subsurface basement to the east. The Early Proterozoic and Archean ages of detrital zircons resemble those of dated basement rocks beneath the Alberta Basin as well as basement exposed within the Cordilleran hinterland (gneisses of Thor–Odin, Frenchman Cap, and Malton regions). However, 2.1–2.4 Ga rocks that are extensive in the subsurface of northern Alberta are not represented in the inventory of detrital zircon ages presented in this paper.This pattern suggests that much of the Cordilleran basement between these latitudes is underlain by Archean crust of the Hearne–Wyoming provinces that may be mantled to the west by an orogenic–magmatic belt of Early Proterozoic (1.7–1.9 Ga) age which may largely have been parallel to the present Cordilleran orogen.


1970 ◽  
Vol 7 (3) ◽  
pp. 858-868 ◽  
Author(s):  
R. H. Wallis

The striking 'fit' of aeromagnetic and gravity data from the Precambrian of northwest Saskatchewan, combined with known and nearby analogous, geological relationships, suggests the presence of a northeast-trending belt, 250 × 20 miles (400 × 30 km), of early Proterozoic (?) metasedimentary rocks, probably magnetite-bearing meta-arkoses. This structural–sedimentary unit might have economic possibilities analogous to other northeast-striking, Precambrian, lower Proterozoic (?), metasedimentary belts of northern Saskatchewan, the Virgin River Belt, and the Wollaston Trend.


1986 ◽  
Vol 81 (1) ◽  
pp. 173-183 ◽  
Author(s):  
Peter L. McSwiggen ◽  
Glen B. Morey ◽  
Paul W. Weiblen

Author(s):  
Adam A. Garde ◽  
Agnete Steenfelt

NOTE: This article was published in a former series of GEUS Bulletin. Please use the original series name when citing this article, for example: Garde, A. A., & Steenfelt, A. (1999). Precambrian geology of Nuussuaq and the area north-east of Disko Bugt, West Greenland. Geology of Greenland Survey Bulletin, 181, 6-40. https://doi.org/10.34194/ggub.v181.5108 _______________ The Precambrian terrain of eastern Nuussuaq and north-east Disko Bugt largely consists of late Archaean (c. 2800 Ma) orthogneisses, intercalated with units of strongly deformed Archaean supracrustal rocks. The latter are up to several kilometres wide and comprise both metavolcanic and metasedimentary rocks within which local occurrences of gold have been found. In central Nuussuaq a layered complex of anorthosite, leucogabbro, gabbro and ultramafic rocks is tectonically intercalated with Archaean orthogneisses, and an intrusive complex of Archaean tonalites and trondhjemites, largely unaffected by Archaean and Proterozoic deformation, occurs in the area north-east of Disko Bugt. Here an up to c. 3.5 km thick sequence of early Proterozoic shallow marine clastic sediments and minor marble unconformably overlies Archaean rocks. Several suites of basic dykes are present, and dykes and small plugs of ultramafic lamprophyre and lamproite (age c. 1750 Ma) are common in the central part of the region. Most of the region was overprinted by early Proterozoic deformation and metamorphism. Prominent Proterozoic flat-lying ductile shear zones with north- or north-westward movement of the hanging wall are overprinted by open folds.


Sign in / Sign up

Export Citation Format

Share Document