Early Proterozoic metamorphism at The Granites gold mine, Northern Territory; implications for the timing of fluid production in high-temperature, low-pressure terranes

1993 ◽  
Vol 88 (5) ◽  
pp. 1099-1113 ◽  
Author(s):  
Ian Scrimgeour ◽  
Mike Sandiford
JOM ◽  
1961 ◽  
Vol 13 (7) ◽  
pp. 490-493 ◽  
Author(s):  
R. A. Perkins ◽  
D. D. Crooks

2021 ◽  
pp. 1-9
Author(s):  
Long Wang ◽  
Dongsheng Yang ◽  
Jiao Chen ◽  
Hui Tan ◽  
Shengyu Zhu ◽  
...  

2019 ◽  
Vol 2019 (1) ◽  
pp. 000387-000392 ◽  
Author(s):  
Sri Krishna Bhogaraju ◽  
Omid Mokhtari ◽  
Jacopo Pascucci ◽  
Fosca Conti ◽  
Hiren R Kotadia ◽  
...  

Abstract High temperature power electronics based on wide-bandgap semiconductors have prominent applications, such as automotive, aircrafts, space exploration, oil/gas extraction, electricity distribution. Die-attach bonding process is an essential process in the realization of high temperature power devices. Here Cu offers to be a promising alternative to Ag, especially because of thermal and mechanical properties on par with Ag and a cost advantage by being a factor 100 cheaper than Ag. With the aim to achieve a low-pressure Cu sintering process, a low cost wet chemical etching process is developed to selectively etch Zn from brass to create nano-porous surface modifications to enhance sinterability, enabling sintering with low bonding pressure of 1MPa and at temperatures below 300°C. However, high tendency of Cu to oxidize poses a major challenge in realizing stable interconnects. For this purpose, in this contribution, we present the use of polyethylene-glycol 600 as reducing binder in the formulation of the Cu sintering paste. Finally, we propose a multi-pronged approach based on three crucial factors: surface-modified substrates, nanostructured surface modifications on micro-scale Cu-alloy particles and use of a reducing binder in the Cu particle paste.


2000 ◽  
Vol 66 (1) ◽  
pp. 92-97 ◽  
Author(s):  
Joanne M. Santini ◽  
Lindsay I. Sly ◽  
Roger D. Schnagl ◽  
Joan M. Macy

ABSTRACT A previously unknown chemolithoautotrophic arsenite-oxidizing bacterium has been isolated from a gold mine in the Northern Territory of Australia. The organism, designated NT-26, was found to be a gram-negative motile rod with two subterminal flagella. In a minimal medium containing only arsenite as the electron donor (5 mM), oxygen as the electron acceptor, and carbon dioxide-bicarbonate as the carbon source, the doubling time for chemolithoautotrophic growth was 7.6 h. Arsenite oxidation was found to be catalyzed by a periplasmic arsenite oxidase (optimum pH, 5.5). Based upon 16S rDNA phylogenetic sequence analysis, NT-26 belongs to theAgrobacterium/Rhizobium branch of the α-Proteobacteria and may represent a new species. This recently discovered organism is the most rapidly growing chemolithoautotrophic arsenite oxidizer known.


2016 ◽  
Vol 119 (14) ◽  
pp. 145702 ◽  
Author(s):  
Pramod Reddy ◽  
Shun Washiyama ◽  
Felix Kaess ◽  
M. Hayden Breckenridge ◽  
Luis H. Hernandez-Balderrama ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document