U–Pb geochronology of Late Cretaceous and early Tertiary plutons in the northern Coast Mountains batholith

1991 ◽  
Vol 28 (6) ◽  
pp. 899-911 ◽  
Author(s):  
George E. Gehrels ◽  
William C. McClelland ◽  
Scott D. Samson ◽  
P. Jonathan Patchett ◽  
David A. Brew

U–Pb geochronologic studies demonstrate that steeply dipping, sheetlike tonalitic plutons along the western margin of the northern Coast Mountains batholith were emplaced between ~83 and ~57 (perhaps ~55) Ma. Less elongate tonalitic–granodioritic bodies in central portions of the batholith yield ages of 59–58 Ma, coeval with younger phases of the tonalitic sheets. Large granite–granodiorite bodies in central and eastern portions of the batholith were emplaced at 51–48 Ma. Trends in ages suggest that the tonalitic bodies generally become younger southeastward and that, at the latitude of Juneau, plutonism migrated northeastward across the batholith at ~0.9 km/Ma. Variations in the age, shape, location, and degree of fabric development among the various plutons indicate that Late Cretaceous – Paleocene tonalitic bodies were emplaced into a steeply dipping, dip-slip shear zone that was active along the western margin of the batholith. Postkinematic Eocene plutons were emplaced at shallow crustal levels. Inherited zircon components in these plutons range in age from mid-Paleozoic to Early Proterozoic and are coeval with detrital zircons in adjacent metasedimentary rocks. These old zircons, combined with evolved Nd isotopic signatures for most plutons, record assimilation of continental crustal or supracrustal rocks during the generation and (or) ascent of the plutons.

1991 ◽  
Vol 28 (6) ◽  
pp. 939-946 ◽  
Author(s):  
Scott D. Samson ◽  
P. Jonathan Patchett ◽  
William C. McClelland ◽  
George E. Gehrels

Nd and Sr isotopic ratios are reported from 15 samples of plutons of the northern Coast Mountains batholith (CMB), between. the Alexander–Wrangellia terrane and the Stikine terrane of southeastern Alaska. Samples of plutons that are part of the Late Cretaceous – Eocene CMB suite have a range in initial εNd of −3.0 to −0.2 and 87Sr/86Sr of 0.70494–0.70607. There is no correlation of isotopic ratio with age, lithology, or geographic location of these plutons. Two plutons that are probably older than the bulk of the CMB plutons have present-day εNd values of −6.8 and −2.6.The Late Cretaceous – Eocene plutons have Nd depleted-mantle model ages (tDM) of 620–1070 Ma. These data indicate that the northern CMB must contain a significant component of old, evolved continental crust. The presence of an old crustal component is further demonstrated by inherited zircons of average Early Proterozoic age contained in some plutons. The mid to Late Proterozoic tDM ages of the CMB plutons are therefore a result of a mixture of Early Proterozoic crustal material with. younger, juvenile crust. The most likely source of this old crustal component is the Yukon–Tanana terrane, a fragment composed of ancient crustal material that occurs within and directly to the west of the northern CMB. The juvenile component is probably a combination of material derived from the mantle and from anatexis of the surrounding juvenile terranes. Crustal anatexis may have occurred as a result of the intrusion of mafic melts related to subduction along the outboard margin of the Alexander–Wrangellia terrane, by crustal thickening due to the underthrusting of the Alexander–Wrangellia terrane beneath the Yukon–Tanana and Stikine terranes, or by a combination of both processes.


1991 ◽  
Vol 28 (8) ◽  
pp. 1285-1300 ◽  
Author(s):  
George E. Gehrels ◽  
William C. McClelland ◽  
Scott D. Samson ◽  
P. Jonathan Patchett

Metamorphic rocks within and west of the northern Coast Mountains in southeastern Alaska consist of an Upper Proterozoic(?) to upper Paleozoic continental margin assemblage that we interpret to belong to the Yukon-Tanana terrane. U–Pb geochronologic analyses of single detrital zircon grains from four samples of quartzite suggest that the zircons were shed from source regions containing rocks of ~495 Ma, ~750 Ma, 1.05–1.40 Ga, 1.75–2.00 Ga, ~2.3 Ga, 2.5–2.7 Ga, and ~3.0 Ga. Multigrain fractions from two samples yield upper intercepts between 2.0 and 2.3 Ga, but the scarcity of single grains of similar age suggests that these fractions comprise a mixture of < 2.0 and > 2.3 Ga grains. Zircons in these rocks generally overlap in age with (i) detrital zircons in metasedimentary rocks of the Yukon–Tanana terrane in eastern Alaska and Yukon, (ii) detrital zircons in strata of the Cordilleran miogeocline, and (iii) plutonic and gneissic rocks that intrude or are overlain by miogeoclinal strata. In addition, the pre-1.7 Ga grains overlap in age with dated crystalline rocks of the western Canadian Shield. These similarities raise the possibility that metaclastic rocks in the northern Coast Mountains accumulated in proximity to western North America. The younger zircon populations were likely shed from mid-Proterozoic to early Paleozoic igneous rocks that now occur locally (but may have been widespread) along the Cordilleran margin. Recognition of a continental margin assemblage of possible North American affinity in the Coast Mountains raises the possibility that some arc-type and oceanic terranes inboard of the Coast Mountains may be large klippen that have been thrust over the North American margin.


1991 ◽  
Vol 28 (6) ◽  
pp. 912-928 ◽  
Author(s):  
William C. McClelland ◽  
Lawrence M. Anovitz ◽  
George E. Gehrels

Thermobarometric data from amphibolite-facies metamorphic rocks west of the Coast Mountains batholith provide important constraints on the structural evolution of the mid-Cretaceous Sumdum–Fanshaw fault system and Late Cretaceous – Paleocene Le Conte Bay shear zone in central southeastern Alaska. Ductile structures that make up the Sumdum–Fanshaw fault system record the east-directed underthrusting of the Alexander terrane and Gravina belt beneath the Ruth assemblage (Yukon–Tanana terrane) and Taku terrane. These structures are truncated to the east by the Le Conte Bay shear zone. Temperature and pressure estimates calculated from the garnet–biotite geothermometer and garnet–rutile–ilmenite–plagioclase–quartz geobarometer suggest juxtaposition of the Gravina belt and Yukon–Tanana terrane at relatively deep levels (>7 kbar) during mid-Cretaceous time. Rocks west of the Le Conte Bay shear zone yield thermobarometric estimates of 465–890 ± 50 °C and 7.1–11.8 ± 1 kbar (1 kbar = 100 MPa). Late Cretaceous and Paleocene metamorphism associated with the Le Conte Bay shear zone reflects synkinematic emplacement of tonalitic intrusions along the western margin of the Coast Mountains batholith. Thermobarometric results from samples adjacent to the tonalite bodies record uplift and retrogression and suggest tonalite emplacement at 7.5–7.7 ± 1 kbar. An eastward increase in thermobarometric estimates observed in Thomas and Le Conte bays is inferred to record uplift and east-side-up tilting of rocks west of and within the Le Conte Bay shear zone during Late Cretaceous and Paleocene time. Rocks within the Le Conte Bay shear zone were apparently rapidly (1.5–2 mm/a) uplifted to shallow crustal levels prior to mid-Eocene time. Thermobarometric results for the Petersburg region are similar to those previously reported along the western flank of the northern Coast Mountains batholith.


1982 ◽  
Vol 22 (1) ◽  
pp. 227
Author(s):  
O. J. W. Bowering

Recent oil discoveries in the Eromanga Basin in sediments ranging in age from Early Jurassic to Early Cretaceous provide strong evidence for an oil source within the basin.A recent study of the thermal history of Eromanga Basin sediments within the licence areas of Delhi Petroleum Pty Ltd and Santos Limited indicates that generation and primary migration of oil within the basin occurred within a period ranging approximately from late Cretaceous to Early Tertiary and that these events pre-dated the artesian system, which developed in Plio-Pleistocene times. Generation is believed to have occurred within deeper basin depocentres; migration toward the shallower marginal areas followed.The present artesian system is unlikely to have flushed oil out of existing traps. However, there is evidence that the artesian flow was stronger previously, and may have influenced secondary migration of oil. A mound spring has furnished evidence of possible migration to the western margin of the basin.


1985 ◽  
Vol 22 (2) ◽  
pp. 154-174 ◽  
Author(s):  
Karen L. Kleinspehn

The Mesozoic Tyaughton–Methow Basin straddles the Fraser–Yalakom–Pasayten – Straight Creek (FYPSC) strike-slip fault zone between six tectono-stratigraphic terranes in southwestern British Columbia. Data from Hauterivian–Cenomanian basin fill provide constraints for reconstruction of fault displacement and paleogeography.The Early Cretaceous eastern margin of the basin was a region of uplifted Jurassic plutons and active intermediate volcanism. Detritus shed southwestward from that margin was deposited as the marine Jackass Mountain Group. Albian inner to mid-fan facies of the Jackass Mountain Group can be correlated across the Yalakom Fault, suggesting 150 ± 25 km of post- Albian dextral offset. Deposits of the Jackass Mountain Group overlap the major strike- slip zone (FYPSC). If that zone represents the eastern boundary of the tectono-stratigraphic terrane, Wrangellia, then accretion of Wrangellia to terranes to the east occurred before late Early Cretaceous time.The western margin of the basin first became prominent with Cenomanian uplift of the Coast Mountain suprastructure. Uplift is recorded by dispersal patterns of the volcaniclastic Kingsvale Group southwest of the Yalakom Fault.Reversing 110 km of Late Cretaceous – early Tertiary dextral motion on the Fraser – Straight Creek Fault followed by 150 km of Cenomanian – Turonian motion on the Yalakom – Ross Lake Fault restores the basin to a reasonable depositional configuration.


2000 ◽  
Vol 37 (2-3) ◽  
pp. 291-306 ◽  
Author(s):  
J Martignole ◽  
A J Calvert ◽  
R Friedman ◽  
P Reynolds

Results of deep seismic reflection survey along a 375 km long transect of the Grenville Province in western Quebec are combined with a review of geological observations and published isotopic ages. The seismic profile offers a remarkably clear image of the crust-mantle boundary and a good definition of the various crustal blocks. Crust about 44 km thick beneath the Grenville Front zone thins abruptly to ca. 36 km southeastward, perhaps the result of extension on southeast-dipping surfaces extending to the Moho. Other zones of relatively thin crust, although less pronounced, occur where Proterozoic crust overlies Archean crust, and beneath the Morin anorthosite complex. The thickest crust is found at the extreme southeast of the transect, east of the Morin anorthosite. From northwest to southeast, three main crustal subdivisions are (1) deformed Archean rocks with southeast-dipping reflectors in the Grenville Front zone, (2) an Archean parautochthon with northwest-dipping reflectors extending to the lower crust, and (3) an overlying three-layer crust interpreted as accreted Proterozoic terranes. The boundary between (2) and (3) is a major, southeast-dipping, crustal-scale ramp (Baskatong ramp) interpreted to have accommodated strain during and after accretion. U-Pb and Pb-Pb ages on detrital zircons show that metasedimentary rocks of the allochthons (Mont-Laurier, Réservoir Cabonga, and Lac Dumoine terranes) range from Archean to as young as 1.21 Ga. A single zone with 1.4 Ga old Sm-Nd model ages appears to lack Archean components and may be considered as a fragment of juvenile Mesoproterozoic crust pinched in a shear zone (Renzy shear zone) that could be raised to the status of terrane (Renzy terrane). In the allochthons, U-Pb ages of metamorphic zircon and monazite cluster around 1.17 Ga (Mont-Laurier and Réservoir Cabonga terrane) and 1.07 Ga (Renzy and Lac Dumoine terrane) and are interpreted to record late and post-accretion crustal reworking, a common feature of the Grenville orogen. A final high-grade metamorphic event (ca. 1.0 Ga) documented only in the parautochthon and the Grenville Front zone records large-scale, piggyback-style thrusting of allochthonous slabs onto the parautochthon. The age of transcurrent displacement following peak metamorphism affecting both the allochthons and the parautochthon decreases northwestward from 1.07 to 1.00 Ga. Dating thus shows that Grenvillian deformation in western Quebec occurred in pulses over an interval of 180 million years, with a tendency to propagate from the inner part of the orogen toward the Grenville Front. Reworked migmatites from the parautochthon cooled from the ca. 1.0 Ga peak of metamorphism through about 450°C (Ar closure in hornblende) at ca. 0.96 Ga with calculated cooling rates of about 6°C per million years, and unroofing rates of 0.33 km per million years. The cooling-unroofing history of the allochthons is not so straightforward, probably due to tectonic disturbances related to allochthon emplacement. Cooling through 450°C occurred between 1.04 and 1.01 Ga, at least 50 million years earlier than cooling in the parautochthon; this contrast agrees with the northwestward propagation of the orogen.


1991 ◽  
Vol 28 (8) ◽  
pp. 1254-1270 ◽  
Author(s):  
Gerald M. Ross ◽  
Randall R. Parrish

We address two problems of Cordilleran geology in this study using U–Pb dating of single detrital zircon grains from metasedimentary rocks: the provenance of the Windermere Supergroup, and the age and correlation of metasedimentary rocks within the Shuswap Complex that are at high metamorphic grade. Because some of these rocks are clearly of North American affinity, the ages of zircons provide indirect constraints on the age and distribution of continental basement from which the zircons were derived.A consistent pattern emerges from ages of about 50 grains from six rocks. Nearly all samples analyzed (48–53°N) are characterized by a bimodal distribution of zircon ages of 1.65–2.16 Ga and > 2.5 Ga, with a distinct lack of ages between 2.1 and 2.5 Ga. Exceptions to this pattern are young zircons from two samples, from Valhalla and Grand Forks – Kettle complexes of southeastern British Columbia, that have grains 1435 ± 35 and 650 ± 15 Ma, respectively. These younger grains are inferred to have been derived from magmatic rocks, and they have no obvious source in either the Canadian Shield or the Alberta subsurface basement to the east. The Early Proterozoic and Archean ages of detrital zircons resemble those of dated basement rocks beneath the Alberta Basin as well as basement exposed within the Cordilleran hinterland (gneisses of Thor–Odin, Frenchman Cap, and Malton regions). However, 2.1–2.4 Ga rocks that are extensive in the subsurface of northern Alberta are not represented in the inventory of detrital zircon ages presented in this paper.This pattern suggests that much of the Cordilleran basement between these latitudes is underlain by Archean crust of the Hearne–Wyoming provinces that may be mantled to the west by an orogenic–magmatic belt of Early Proterozoic (1.7–1.9 Ga) age which may largely have been parallel to the present Cordilleran orogen.


Lithosphere ◽  
2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Lianna Vice ◽  
H. Daniel Gibson ◽  
Steve Israel

Abstract The Intermontane-Insular terrane boundary stretches over 2000 kilometers from British Columbia to Alaska in the western Cordillera. Juxtaposed between these terranes is a series of Jura-Cretaceous basinal and arc assemblages that record a complicated and contested tectonic evolution related to the Mesozoic-Paleocene accretionary history of northwestern North America. In southwest Yukon, west-verging thrust faults facilitated structural stacking of the Yukon-Tanana terrane over these basinal assemblages, including the Early Cretaceous Blanchard River assemblage. These previously undated compressional structures are thought to be related to the final collapse of the Jura-Cretaceous basins and the tectonic burial of the Blanchard River assemblage resulting in amphibolite facies metamorphism. New in situ U-Th-Pb monazite ages record at least three tectonic events: (1) the tectonic burial of the Blanchard River assemblage to amphibolite facies conditions between 83 and 76 Ma; (2) peak burial was followed by regional exhumation at ca. 70-68 Ma; and (3) intense heating and ca. 63-61 Ma low-pressure contact metamorphism attributed to the intrusion of the voluminous Ruby Range suite, which is part of the northern Coast Mountains batholith. The tectonometamorphic evolution recorded in the Blanchard River assemblage can be correlated to tectonism within southwest Yukon and along the length of the Insular-Intermontane boundary from western British Columbia through southwestern Yukon and Alaska. In southwest Yukon, these results suggest an asymmetric final collapse of Jura-Cretaceous basins during the Late Cretaceous, which relates to the terminal accretion of the Insular terranes as they moved northward.


2019 ◽  
Vol 132 (3-4) ◽  
pp. 477-494
Author(s):  
Xiaoping Long ◽  
Jin Luo ◽  
Min Sun ◽  
Xuan-ce Wang ◽  
Yujing Wang ◽  
...  

Abstract The tectonic affinity of the terranes and microcontinents within the Central Asian Orogenic Belt (CAOB) remains controversial. The Altai-Mongolian terrane (AMT), as a representative tectonic unit in the Mongolian collage, plays a vital role in reconstructing evolution history of the CAOB. The well-preserved early Paleozoic sedimentary sequence covering in this terrane could be considered as a fingerprint to track its provenance and tectonic affinity. Here, we present new whole-rock geochemistry, detrital zircon U-Pb dating, and Hf isotopic analysis for the metasedimentary rocks from the Mongolian Altai in order to shed new light on the tectonic affinity of the AMT. The youngest detrital zircon ages and the regional intrusions constrain the depositional time of the Mongolian Altai sequence to between Late Silurian and Early Devonian, which is consistent with the Habahe group in the western Chinese Altai. The features of whole-rock geochemistry and the cumulative distribution curves of the detrital zircon age spectra indicate that the Mongolian Altai sequence was probably deposited in an active continental setting during early Paleozoic. The zircon age spectra of our samples are all characterized by a main age group in the early Cambrian (peak at 541 Ma, 522 Ma, 506 Ma and 496 Ma, respectively), subdominant age populations during the Tonian, as well as rare older zircons. The nearby Lake Zone of Ikh-Mongol Arc most likely provided plenty of early Paleozoic materials, the subdominant Neoproterozoic detrital zircons could be supplied by the felsic intrusions along the western margin of the Tuva-Mongol microcontinent, and the sparse older zircons may be derived from its basement material. The Precambrian age distribution of the AMT is quite similar to both the Tarim and Siberia cratons, but the Siberia Craton displays a closer resemblance in Hf isotopic composition with the AMT. Thus, we believe that the Siberia Craton contains a closer tectonic affinity with the AMT, and that the Tuva-Mongol microcontinent possibly rifted from the western margin of this craton after the Tonian. To the south of the AMT, recent studies indicated the Yili and Central Tianshan blocks in the Kazakhstan collage of the western CAOB likely have a closer affinity with Gondwana. Therefore, the microcontinents in the CAOB most likely derived bilaterally from both the Siberia Craton and the Gondwana supercontinent. Moreover, our Hf isotopic compositions indicate two significant continental growth events in the Tonian and early Paleozoic, respectively.


Sign in / Sign up

Export Citation Format

Share Document