An experimental investigation of mass flow characteristics of laval nozzles with transversal injection through an annular slot in the side wall

1992 ◽  
Vol 18 (1) ◽  
pp. 35-39
Author(s):  
B.A. Gabaraev ◽  
E.K. Karasyev ◽  
O.Yu Novoselsky ◽  
S.Z. Lutovinov ◽  
L.K. Tickhonenko ◽  
...  
1965 ◽  
Vol 180 (1) ◽  
pp. 641-672 ◽  
Author(s):  
R. S. Benson ◽  
A. Whitfield

The results are given of an experimental investigation of the flow characteristics of a centrifugal compressor under non-steady flow conditions. The compressor delivered air against a rotary valve with a tee branch located in the pipe system between the compressor and the rotary valve. By varying the areas of a nozzle located at the branch end and orifices in the rotary valve a range of flow conditions could be explored. The tests showed that the surge point was displaced to a point of greater mass flow (thus reducing the flow range of the compressor); the magnitude of the displacement depended on the frequency and amplitude of the pressure pulses. Except for small fluctuations in pressure the overall compressor efficiency was reduced for all the test conditions. The flow characteristic of the compressor, as represented by the pressure-mass flow curves, were displaced under all conditions of pulsating flow, the greatest deviation from steady flow characteristics occurring with largest fluctuations in rotary valve area and at low frequencies.


Author(s):  
Jian Pu ◽  
Zhaoqing Ke ◽  
Jianhua Wang ◽  
Lei Wang ◽  
Hongde You

This paper presents an experimental investigation on the characteristics of the fluid flow within an entire coolant channel of a low pressure (LP) turbine blade. The serpentine channel, which keeps realistic blade geometry, consists of three passes connected by a 180° sharp bend and a semi-round bend, 2 tip exits and 25 trailing edge exits. The mean velocity fields within several typical cross sections were captured using a particle image velocimetry (PIV) system. Pressure and flow rate at each exit were determined through the measurements of local static pressure and volume flow rate. To optimize the design of LP turbine blade coolant channels, the effect of tip ejection ratio (ER) from 180° sharp bend on the flow characteristics in the coolant channel were experimentally investigated at a series of inlet Reynolds numbers from 25,000 to 50,000. A complex flow pattern, which is different from the previous investigations conducted by a simplified square or rectangular two-pass U-channel, is exhibited from the PIV results. This experimental investigation indicated that: a) in the main flow direction, the regions of separation bubble and flow impingement increase in size with a decrease of the ER; b) the shape, intensity and position of the secondary vortices are changed by the ER; c) the mass flow ratio of each exit to inlet is not sensitive to the inlet Reynolds number; d) the increase of the ER reduces the mass flow ratio through each trailing edge exit to the extent of about 23–28% of the ER = 0 reference under the condition that the tip exit located at 180° bend is full open; e) the pressure drop through the entire coolant channel decreases with an increase in the ER and inlet Reynolds number, and a reduction about 35–40% of the non-dimensional pressure drop is observed at different inlet Reynolds numbers, under the condition that the tip exit located at 180° bend is full open.


2020 ◽  
Vol 2020 (0) ◽  
pp. S05105
Author(s):  
Tetsuji OHMURA ◽  
Toshihiko SHAKOUCHI ◽  
Shunsuke FUKUSHIMA ◽  
Koichi TSUJIMOTO

2018 ◽  
Vol 8 (9) ◽  
pp. 1413 ◽  
Author(s):  
Dan Yao ◽  
Kwongi Lee ◽  
Minho Ha ◽  
Cheolung Cheong ◽  
Inhiug Lee

A new pump, called the hybrid airlift-jet pump, is developed by reinforcing the advantages and minimizing the demerits of airlift and jet pumps. First, a basic design of the hybrid airlift-jet pump is schematically presented. Subsequently, its performance characteristics are numerically investigated by varying the operating conditions of the airlift and jet parts in the hybrid pump. The compressible unsteady Reynolds-averaged Navier-Stokes equations, combined with the homogeneous mixture model for multiphase flow, are used as the governing equations for the two-phase flow in the hybrid pump. The pressure-based methods combined with the Pressure-Implicit with Splitting of Operators (PISO) algorithm are used as the computational fluid dynamics techniques. The validity of the present numerical methods is confirmed by comparing the predicted mass flow rate with the measured ones. In total, 18 simulation cases that are designed to represent the various operating conditions of the hybrid pump are investigated: eight of these cases belong to the operating conditions of only the jet part with different air and water inlet boundary conditions, and the remaining ten cases belong to the operating conditions of both the airlift and jet parts with different air and water inlet boundary conditions. The mass flow rate and the efficiency are compared for each case. For further investigation into the detailed flow characteristics, the pressure and velocity distributions of the mixture in a primary pipe are compared. Furthermore, a periodic fluctuation of the water flow in the mass flow rate is found and analyzed. Our results show that the performance of the jet or airlift pump can be enhanced by combining the operating principles of two pumps into the hybrid airlift-jet pump, newly proposed in the present study.


Sign in / Sign up

Export Citation Format

Share Document