A simple water balance daily rainfall-runoff model with application to the tropical Magela Creek catchment

1988 ◽  
Vol 42 (3-4) ◽  
pp. 245-264 ◽  
Author(s):  
Ilias Mihail Vardavas
2012 ◽  
Vol 43 (1-2) ◽  
pp. 123-134 ◽  
Author(s):  
Danrong Zhang ◽  
Liru Zhang ◽  
Yiqing Guan ◽  
Xi Chen ◽  
Xinfang Chen

The Xinanjiang rainfall–runoff model has been successfully applied in many humid and sub-humid areas in China since 1973. The wide application is due to the simple model structure, the clear physical meaning of the parameters and the well-defined model calibration procedure. However, due to a data scarcity problem and short runoff concentration time, its applications to small drainage basins are difficult. Therefore, we investigate the model application in Lianghui, a small drainage basin of Zhejiang province in China. By using generalized likelihood uncertainty estimation (GLUE) methodology, the sensitivity of parameters of Xinanjiang model was investigated. The data clearly showed that equifinality phenomenon was evident in both water balance parameter calibration and runoff routing parameter calibration procedures. The results showed that K (evapotranspiration conversion coefficient), Cs (recession constant in channel system) and Sm (areal free water storage capacity of surface soil) are the most sensitive parameters for the water balance parameter calibration while Cs, Sm and Wm (mean area tension water capacity) are the most sensitive parameters for runoff routing parameter calibration. The conclusion is favourable for understanding parameters of Xinanjiang model in order to provide valuable scientific information for simulating hydrological processes in small drainage basins.


2020 ◽  
Vol 24 (6) ◽  
pp. 2981-2997
Author(s):  
Stephen P. Charles ◽  
Francis H. S. Chiew ◽  
Nicholas J. Potter ◽  
Hongxing Zheng ◽  
Guobin Fu ◽  
...  

Abstract. Realistic projections of changes to daily rainfall frequency and magnitude, at catchment scales, are required to assess the potential impacts of climate change on regional water supply. We show that quantile–quantile mapping (QQM) bias-corrected daily rainfall from dynamically downscaled WRF simulations of current climate produce biased hydrological simulations, in a case study for the state of Victoria, Australia (237 629 km2). While the QQM bias correction can remove bias in daily rainfall distributions at each 10 km × 10 km grid point across Victoria, the GR4J rainfall–runoff model underestimates runoff when driven with QQM bias-corrected daily rainfall. We compare simulated runoff differences using bias-corrected and empirically scaled rainfall for several key water supply catchments across Victoria and discuss the implications for confidence in the magnitude of projected changes for mid-century. Our results highlight the imperative for methods that can correct for temporal and spatial biases in dynamically downscaled daily rainfall if they are to be suitable for hydrological projection.


2018 ◽  
Vol 11 (4) ◽  
pp. 1591-1605 ◽  
Author(s):  
Léonard Santos ◽  
Guillaume Thirel ◽  
Charles Perrin

Abstract. In many conceptual rainfall–runoff models, the water balance differential equations are not explicitly formulated. These differential equations are solved sequentially by splitting the equations into terms that can be solved analytically with a technique called “operator splitting”. As a result, only the solutions of the split equations are used to present the different models. This article provides a methodology to make the governing water balance equations of a bucket-type rainfall–runoff model explicit and to solve them continuously. This is done by setting up a comprehensive state-space representation of the model. By representing it in this way, the operator splitting, which makes the structural analysis of the model more complex, could be removed. In this state-space representation, the lag functions (unit hydrographs), which are frequent in rainfall–runoff models and make the resolution of the representation difficult, are first replaced by a so-called “Nash cascade” and then solved with a robust numerical integration technique. To illustrate this methodology, the GR4J model is taken as an example. The substitution of the unit hydrographs with a Nash cascade, even if it modifies the model behaviour when solved using operator splitting, does not modify it when the state-space representation is solved using an implicit integration technique. Indeed, the flow time series simulated by the new representation of the model are very similar to those simulated by the classic model. The use of a robust numerical technique that approximates a continuous-time model also improves the lag parameter consistency across time steps and provides a more time-consistent model with time-independent parameters.


2017 ◽  
Author(s):  
Léonard Santos ◽  
Guillaume Thirel ◽  
Charles Perrin

Abstract. In many conceptual rainfall-runoff models, the water balance differential equations are not explicitly formulated. These differential equations are solved sequentially by splitting the equations into terms that can be solved analytically with a technique called "operator splitting". As a result, only the resolutions of the split equations are used to present the different models. This article provides a methodology to make the governing water balance equations of a bucket-type rainfall-runoff model explicit. This is done by setting up a comprehensive state-space representation of the model. By representing it in this way, the operator splitting, which complexifies the structural analysis of the model, is removed. In this state-space representation, the lag functions (unit hydrographs), which are frequent in this type of model and make the resolution of the representation difficult, are replaced by a so-called "Nash cascade". This substitution also improves the lag parameter consistency across time steps. To illustrate this methodology, the GR4J model is taken as an example. The flow time series simulated by the new representation of the model are very similar to those simulated by the classic model. The state-space representation provides a more time-consistent model with time-independent parameters.


2011 ◽  
Vol 12 (5) ◽  
pp. 1100-1112 ◽  
Author(s):  
J. Vaze ◽  
D. A. Post ◽  
F. H. S. Chiew ◽  
J.-M. Perraud ◽  
J. Teng ◽  
...  

Abstract Different methods have been used to obtain the daily rainfall time series required to drive conceptual rainfall–runoff models, depending on data availability, time constraints, and modeling objectives. This paper investigates the implications of different rainfall inputs on the calibration and simulation of 4 rainfall–runoff models using data from 240 catchments across southeast Australia. The first modeling experiment compares results from using a single lumped daily rainfall series for each catchment obtained from three methods: single rainfall station, Thiessen average, and average of interpolated rainfall surface. The results indicate considerable improvements in the modeled daily runoff and mean annual runoff in the model calibration and model simulation over an independent test period with better spatial representation of rainfall. The second experiment compares modeling using a single lumped daily rainfall series and modeling in all grid cells within a catchment using different rainfall inputs for each grid cell. The results show only marginal improvement in the “distributed” application compared to the single rainfall series, and only in two of the four models for the larger catchments. Where a single lumped catchment-average daily rainfall series is used, care should be taken to obtain a rainfall series that best represents the spatial rainfall distribution across the catchment. However, there is little advantage in driving a conceptual rainfall–runoff model with different rainfall inputs from different parts of the catchment compared to using a single lumped rainfall series, where only estimates of runoff at the catchment outlet is required.


2017 ◽  
Vol 10 (1) ◽  
pp. 197-209 ◽  
Author(s):  
Y. Osman ◽  
N. Al-Ansari ◽  
M. Abdellatif

Abstract The northern region of Iraq heavily depends on rivers, such as the Greater Zab, for water supply and irrigation. Thus, river water management in light of future climate change is of paramount importance in the region. In this study, daily rainfall and temperature obtained from the Greater Zab catchment, for 1961–2008, were used in building rainfall and evapotranspiration models using LARS-WG and multiple linear regressions, respectively. A rainfall–runoff model, in the form of autoregressive model with exogenous factors, has been developed using observed flow, rainfall and evapotranspiration data. The calibrated rainfall–runoff model was subsequently used to investigate the impacts of climate change on the Greater Zab flows for the near (2011–2030), medium (2046–2065), and far (2080–2099) futures. Results from the impacts model showed that the catchment is projected to suffer a significant reduction in total annual flow in the far future; with more severe drop during the winter and spring seasons in the range of 25 to 65%. This would have serious ramifications for the current agricultural activities in the catchment. The results could be of significant benefits for water management planners in the catchment as they can be used in allocating water for different users in the catchment.


2010 ◽  
Vol 41 (2) ◽  
pp. 134-144
Author(s):  
Marie-Laure Segond ◽  
Howard S. Wheater ◽  
Christian Onof

A simple and practical spatial–temporal disaggregation scheme to convert observed daily rainfall to hourly data is presented, in which the observed sub-daily temporal profile available at one gauge is applied linearly to all sites over the catchment to reproduce the spatially varying daily totals. The performance of the methodology is evaluated using an event-based, semi-distributed, nonlinear hydrological rainfall–runoff model to test the suitability of the disaggregation scheme for UK conditions for catchment sizes of 80–1,000 km2. The joint procedure is tested on the Lee catchment, UK, for five events from a 12 year period of data from 16 rain gauges and 12 flow stations. The disaggregation scheme generally performs extremely well in reproducing the simulated flow for the natural catchments, although, as expected, performance deteriorates for localized convective rainfall. However, some reduction in performance occurs when the catchments are artificially urbanised.


Sign in / Sign up

Export Citation Format

Share Document