Localization of the ρ1- and ρ2-subunit messenger RNAs in chick retina by in situ hybridization predicts the existence of γ-aminobutyric acid type C receptor subtypes

1995 ◽  
Vol 189 (3) ◽  
pp. 155-158 ◽  
Author(s):  
Barbara E. Albrecht ◽  
Mark G. Darlison
1995 ◽  
Vol 268 (2) ◽  
pp. F220-F226 ◽  
Author(s):  
D. P. Healy ◽  
M. Q. Ye ◽  
M. Troyanovskaya

The physiological effects of angiotensin II (ANG II) on the kidney are mediated primarily by the ANG II type 1 (AT1) receptor. Two highly similar AT1 receptor subtypes have been identified in the rat by molecular cloning techniques, namely AT1A and AT1B. The intrarenal localization of the AT1A and AT1B receptor subtypes has not been studied by hybridization methods with subtype-specific receptor probes. Using radiolabeled probes from the 3' noncoding region of the AT1A and AT1B cDNAs, we localized AT1 mRNA in rat kidney by in situ hybridization. Specificity of the 3' noncoding region probes was tested by Northern blot and solution hybridization methods. AT1A mRNA levels were highest in the liver, kidney, and adrenal. In contrast, AT1B mRNA levels were highest in the adrenal and pituitary and low in kidney. Autoradiographic localization of 125I-[Sar1,Ile8]ANG II binding indicated that the highest levels of AT1 receptors were found in glomeruli and vascular elements. In situ hybridization with a nonselective AT1 receptor riboprobe indicated that the highest levels of AT1 mRNA were in the outer medullary vasa recta and cortical glomeruli with additional diffuse labeling of the cortex and outer medulla, consistent with labeling of tubular elements. In contrast, in situ hybridization with the AT1 subtype selective probes revealed that AT1A receptor mRNA was primarily localized to the vasa recta and diffusely to the outer stripe of the outer medulla and the renal cortex.(ABSTRACT TRUNCATED AT 250 WORDS)


1989 ◽  
Vol 44 (3) ◽  
pp. 548-553 ◽  
Author(s):  
Christine Clavel ◽  
Martine Doco ◽  
Aude Lallemand ◽  
Maryvonne Laurent ◽  
Philippe Birembaut

2009 ◽  
Vol 37 (6) ◽  
pp. 1399-1403 ◽  
Author(s):  
Chammiran Daniel ◽  
Marie Öhman

A-to-I (adenosine-to-inosine) RNA editing catalysed by the ADARs (adenosine deaminases that act on RNA) is a post-transcriptional event that contributes to protein diversity in metazoans. In mammalian neuronal ion channels, editing alters functionally important amino acids and creates receptor subtypes important for the development of the nervous system. The excitatory AMPA (α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid) and kainate glutamate receptors, as well as the inhibitory GABAA [GABA (γ-aminobutyric acid) type A] receptor, are subject to A-to-I RNA editing. Editing affects several features of the receptors, including kinetics, subunit assembly and cell-surface expression. Here, we discuss the regulation of editing during brain maturation and the impact of RNA editing on the expression of different receptor subtypes.


Sign in / Sign up

Export Citation Format

Share Document