Modulation of N-methyl-d-aspartic acid receptors by extracellular calcium in immature and adult hippocampal slices: whole cell recordings in CA3 pyramidal cells

1995 ◽  
Vol 194 (3) ◽  
pp. 209-213 ◽  
Author(s):  
J.A. Gorter ◽  
R.J. Brady
2003 ◽  
Vol 90 (5) ◽  
pp. 2964-2972 ◽  
Author(s):  
Roman Tyzio ◽  
Anton Ivanov ◽  
Cristophe Bernard ◽  
Gregory L. Holmes ◽  
Yehezkiel Ben-Ari ◽  
...  

A depolarized resting membrane potential has long been considered to be a universal feature of immature neurons. Despite the physiological importance, the underlying mechanisms of this developmental phenomenon are poorly understood. Using perforated-patch, whole cell, and cell-attached recordings, we measured the membrane potential in CA3 pyramidal cells in hippocampal slices from postnatal rats. With gramicidin perforated-patch recordings, membrane potential was –44 ± 4 (SE) mV at postnatal days P0–P2, and it progressively shifted to –67 ± 2 mV at P13–15. A similar developmental change of the membrane potential has been also observed with conventional whole cell recordings. However, the value of the membrane potential deduced from the reversal potential of N-methyl-d-aspartate channels in cell-attached recordings did not change with age and was –77 ± 2 mV at P2 and –77 ± 2 mV at P13–14. The membrane potential measured using whole cell recordings correlated with seal and input resistance, being most depolarized in neurons with high, several gigaohms, input resistance and low seal resistance. Simulations revealed that depolarized values of the membrane potential in whole cell and perforated-patch recordings could be explained by a shunt through the seal contact between the pipette and membrane. Thus the membrane potential of CA3 pyramidal cells appears to be strongly negative at birth and does not change during postnatal development.


1994 ◽  
Vol 72 (5) ◽  
pp. 2167-2180 ◽  
Author(s):  
H. E. Scharfman

1. Simultaneous intracellular recordings of area CA3 pyramidal cells and dentate hilar “mossy” cells were made in rat hippocampal slices to test the hypothesis that area CA3 pyramidal cells excite mossy cells monosynaptically. Mossy cells and pyramidal cells were differentiated by location and electrophysiological characteristics. When cells were impaled near the border of area CA3 and the hilus, their identity was confirmed morphologically after injection of the marker Neurobiotin. 2. Evidence for monosynaptic excitation of a mossy cell by a pyramidal cell was obtained in 7 of 481 (1.4%) paired recordings. In these cases, a pyramidal cell action potential was followed immediately by a 0.40 to 6.75 (mean, 2.26) mV depolarization in the simultaneously recorded mossy cell (mossy cell membrane potentials, -60 to -70 mV). Given that pyramidal cells used an excitatory amino acid as a neurotransmitter (Cotman and Nadler 1987; Ottersen and Storm-Mathisen 1987) and recordings were made in the presence of the GABAA receptor antagonist bicuculline (25 microM), it is likely that the depolarizations were unitary excitatory postsynaptic potentials (EPSPs). 3. Unitary EPSPs of mossy cells were prone to apparent “failure.” The probability of failure was extremely high (up to 0.72; mean = 0.48) if the effects of all presynaptic action potentials were examined, including action potentials triggered inadvertently during other spontaneous EPSPs of the mossy cell. Probability of failure was relatively low (as low as 0; mean = 0.24) if action potentials that occurred during spontaneous activity of the mossy cell were excluded. These data suggest that unitary EPSPs produced by pyramidal cells are strongly affected by concurrent synaptic inputs to the mossy cell. 4. Unitary EPSPs were not clearly affected by manipulation of the mossy cell's membrane potential. This is consistent with the recent report that area CA3 pyramidal cells innervate distal dendrites of mossy cells (Kunkel et al. 1993). Such a distal location also may contribute to the high incidence of apparent failures. 5. Characteristics of unitary EPSPs generated by pyramidal cells were compared with the properties of the unitary EPSPs produced by granule cells. In two slices, pyramidal cell and granule cell inputs to the same mossy cell were compared. In other slices, inputs to different mossy cells were compared. In all experiments, unitary EPSPs produced by granule cells were larger in amplitude but similar in time course to unitary EPSPs produced by pyramidal cells. Probability of failure was lower and paired-pulse facilitation more common among EPSPs triggered by granule cells.(ABSTRACT TRUNCATED AT 400 WORDS)


1986 ◽  
Vol 56 (6) ◽  
pp. 1718-1738 ◽  
Author(s):  
J. W. Swann ◽  
R. J. Brady ◽  
R. J. Friedman ◽  
E. J. Smith

Experiments were performed in order to identify the sites of epileptiform burst generation in rat hippocampal CA3 pyramidal cells. A subsequent slow field potential was studied, which is associated with afterdischarge generation. Laminar field potential and current source-density (CSD) methods were employed in hippocampal slices exposed to penicillin. Simultaneous intracellular and extracellular field recordings from the CA3 pyramidal cell body layer showed that whenever an epileptiform burst was recorded extracellularly, individual CA3 neurons underwent an intense depolarization shift. In extracellular records a slow negative field potential invariably followed epileptiform burst generation. In approximately 10% of slices, synchronous afterdischarges rode on the envelope of this negative field potential. Intracellularly a depolarizing afterpotential followed the depolarization shift and was coincident with the extracellular slow negative field potential. A one-dimensional CSD analysis performed perpendicular to the CA3 cell body layer showed that during epileptiform burst generation large current sinks occur simultaneously in the central portions of both the apical and basilar dendrites. The average distance of the peak amplitude for these sinks from the center of the cell body layer was 175 +/- 46.8 microns and 158 +/- 25.0 microns, respectively. A large current source was recorded in the cell body layer. Smaller current sources were observed in the distal portions of the dendritic layers. During the postburst slow field potential a current sink was recorded at the edge of the cell body layer in stratum oriens--a region referred to as the infrapyramidal zone. Simultaneous with the current sink recorded there, smaller sinks were often observed in the dendritic layers that appeared to be "tails" or prolongations of the currents underlying burst generation. Two-dimensional analyses of these field potentials were performed on planes parallel and perpendicular to the exposed surface of the slice. Isopotential contours showed that the direction of extracellular current is mainly orthogonal to the CA3 laminae. Correction of CSD estimates made perpendicular to the cell body layer for current flowing in the other direction did not alter the location of computed current sources and sinks. In order to show that the dendritic currents associated with epileptiform burst generation were active sinks, tetrodotoxin (TTX) was applied locally to the dendrites where the current sinks were recorded.(ABSTRACT TRUNCATED AT 400 WORDS)


2005 ◽  
Vol 93 (5) ◽  
pp. 2656-2667 ◽  
Author(s):  
Joshua T. Kantrowitz ◽  
N. Noelle Francis ◽  
Alejandro Salah ◽  
Katherine L. Perkins

In the presence of 4-aminopyridine, interneurons fire synchronously, causing giant GABA-mediated postsynaptic potentials (GPSPs; GPSCs in voltage clamp) in CA3 pyramidal cells in hippocampal slices from adult guinea pigs. These triphasic GPSPs are composed of a GABAA-mediated hyperpolarizing component, a depolarizing component, and a GABAB-mediated hyperpolarizing component. We propose that GABAB receptors exert control over the postsynaptic depolarizing GABA response. Microelectrode and cell-attached recordings demonstrated that the mean number of action potentials during the depolarizing component of the GPSP increased dramatically in the presence of the GABAB receptor antagonist (2S)-3-[[(1S)-1-(3,4-dichlorophenyl)ethyl]amino-2- hydroxypropyl](phenylmethyl) phosphinic acid (CGP 55845A; P = 0.003 and 0.0005, respectively). Whole cell voltage-clamp recordings showed that the postsynaptic GABAB and depolarizing GABA components of the GPSC overlap substantially, allowing the GABAB-mediated hyperpolarization to suppress the excitation mediated by the depolarizing GABA component. Further voltage-clamp recordings showed that CGP 55845A increased the duration of the depolarizing GABA component of the GPSC even when the GABAB component had already been blocked by internal QX-314, suggesting that CGP 55845A also increased the duration of GABA release. When glutamatergic transmission is intact, GPSPs directly precede epileptiform afterdischarges. We hypothesize that the depolarizing component of the GPSP triggers the epileptiform events and show here that enhancement of the depolarizing component with CGP 55845A increased epileptiform activity. CGP 55845A increased the likelihood of a GPSP triggering an epileptiform event from 32 to 99% ( P = 0.0000001), and significantly increased the number of afterdischarges per epileptiform event ( P = 0.001). Loss of GABAB receptor function is associated with temporal lobe epilepsy in rodents and humans. We show here that GABAB receptors exert control over the synaptic depolarizing GABA response and that block of GABAB receptors makes the depolarizing GABA response excitatory and proconvulsive.


1993 ◽  
Vol 70 (3) ◽  
pp. 1018-1029 ◽  
Author(s):  
M. Avoli ◽  
C. Psarropoulou ◽  
V. Tancredi ◽  
Y. Fueta

1. Extracellular field potential and intracellular recordings were made in the CA3 subfield of hippocampal slices obtained from 10- to 24-day-old rats during perfusion with artificial cerebrospinal fluid (ACSF) containing the convulsant 4-aminopyridine (4-AP, 50 microM). 2. Three types of spontaneous, synchronous activity were recorded in the presence of 4-AP by employing extracellular microelectrodes positioned in the CA3 stratum (s.) radiatum: first, inter-ictal-like discharges that lasted 0.2-1.2 s and had an occurrence rate of 0.3-1.3 Hz; second, ictal-like events (duration: 3-40 s) that occurred at 4-38 x 10(-3) Hz; and third, large-amplitude (up to 8 mV) negative-going potentials that preceded the onset of the ictal-like events and thus appeared to initiate them. 3. None of these synchronous activities was consistently modified by addition of antagonists of the N-methyl-D-aspartate (NMDA) receptor to the ACSF. In contrast, the non-NMDA receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX, 2-10 microM) reversibly blocked interictal- and ictallike discharges. The only synchronous, spontaneous activity recorded in this type of medium consisted of the negative-going potentials that were abolished by the GABAA receptor antagonists bicuculline methiodide (5-20 microM) or picrotoxin (50 microM). Hence they were mediated through the activation of the GABAA receptor. 4. Profile analysis of the 4-AP-induced synchronous activity revealed that the gamma-aminobutyric acid (GABA)-mediated field potential had maximal negative amplitude in s. lacunosum-moleculare, attained equipotentiality at the border between s. radiatum and s. pyramidale, and became positive-going in s. oriens. These findings indicated that the GABA-mediated field potential presumably represented a depolarization occurring in the dendrites of CA3 pyramidal cells. 5. This conclusion was supported by intracellular analysis of the 4-AP-induced activity. The GABA-mediated potential was reflected by a depolarization of the membrane of CA3 pyramidal cells that triggered a few variable-amplitude, fractionated spikes or fast action potentials. By contrast, the ictal-like discharge was associated with a prolonged depolarization during which repetitive bursts of action potentials occurred. Short-lasting depolarizations with bursts of action potentials occurred during each interictal-like discharge. 6. The GABA-mediated potential recorded intracellularly in the presence of CNQX consisted of a prolonged depolarization (up to 12 s) that was still capable of triggering a few fast action potentials and/or fractionated spikes.(ABSTRACT TRUNCATED AT 400 WORDS)


1999 ◽  
Vol 81 (5) ◽  
pp. 2095-2102 ◽  
Author(s):  
Sonia Bolea ◽  
Elena Avignone ◽  
Nicola Berretta ◽  
Juan V. Sanchez-Andres ◽  
Enrico Cherubini

Glutamate controls the induction of GABA-mediated giant depolarizing potentials through AMPA receptors in neonatal rat hippocampal slices. Giant depolarizing potentials (GDPs) are generated by the interplay of the depolarizing action of GABA and glutamate. In this study, single and dual whole cell recordings (in current-clamp configuration) were performed from CA3 pyramidal cells in hippocampal slices obtained from postnatal (P) days P1- to P6-old rats to evaluate the role of ionotropic glutamate receptors in GDP generation. Superfusion of 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) (10–40 μM) completely blocked GDPs. However, in the presence of CNQX, it was still possible to re-induce the appearance of GDPs with GABA (20 μM) or (RS)-α-amino-3-hydroxy-5-methyl-4-isoxadepropionate (AMPA) (5 μM). This effect was prevented by the more potent and selective AMPA receptor antagonist GYKI 53655 (50–100 μM). In the presence of GYKI 53655, both kainic or domoic acid (0.1–1 μM) were unable to induce GDPs. In contrast, bath application of d-(−)-2-amino-5-phosphonopentanoic acid (50 μM) or (+)-3-(2carboxy-piperazin-4-yl)-propyl-l-phosphonic acid (20 μM) produced only a 37 ± 9% (SE) and 36 ± 11% reduction in GDPs frequency, respectively. Cyclothiazide, a selective blocker of AMPA receptor desensitization, increased GDP frequency by 76 ± 14%. Experiments were also performed with an intracellular solution containing KF to block GABAAreceptor-mediated responses. In these conditions, a glutamatergic component of GDP was revealed. GDPs could still be recorded synchronous with those detected simultaneously with KCl-filled electrodes, although their amplitude was smaller. Similar results were found in pair recordings obtained from minislices containing only a small portion of the CA3 area. These data suggest that GDP generation requires activation of AMPA receptors by local release of glutamate from recurrent collaterals.


2000 ◽  
Vol 83 (5) ◽  
pp. 2844-2853 ◽  
Author(s):  
Shih-Chieh Chuang ◽  
Riccardo Bianchi ◽  
Robert K. S. Wong

A unique property of the group I metabotropic glutamate receptor (mGluR)-induced depolarization in hippocampal cells is that the amplitude of the depolarization is larger when the response is elicited at more depolarized membrane potentials. Our understanding of the conductance mechanism underlying this voltage-dependent response is incomplete. Through the use of current-clamp and single-electrode voltage-clamp recordings in guinea pig hippocampal slices, we examined the group I mGluR-induced depolarization in CA3 pyramidal cells. The group I mGluR agonists ( S)-3-hydroxyphenylglycine and ( S)-3,5-dihydroxyphenylglycine turned on a voltage-gated inward current ( I mGluR(V)), which was pharmacologically distinct from the voltage-gated sodium and calcium currents intrinsic to the cells. I mGluR(V)was a slowly activating, noninactivating current with a threshold at about −75 mV. In addition to the activation of I mGluR(V), group I mGluR stimulation also produced a voltage-independent decrease in the K+conductance. Our results suggest that the depolarization induced by group I mGluR activation is generated by two ionic mechanisms—a heretofore unrecognized voltage-gated inward current ( I mGluR(V)) that is turned on by depolarization and a voltage-insensitive inward current that results from a turn-off of the K+ conductance. The low-threshold and noninactivating properties of I mGluR(V)allow the current to play a significant role in setting the resting potential and firing pattern of CA3 pyramidal cells.


Sign in / Sign up

Export Citation Format

Share Document