Bacillus cereus spore germination: Absolute requirement for an amino acid

1968 ◽  
Vol 170 (2) ◽  
pp. 341-350 ◽  
Author(s):  
S.C. Warren ◽  
G.W. Gould
2008 ◽  
Vol 190 (18) ◽  
pp. 6148-6152 ◽  
Author(s):  
Adam Senior ◽  
Anne Moir

ABSTRACT The GerT protein of Bacillus cereus shares 74% amino acid identity with its homolog GerN. The latter is a Na+/H+-K+ antiporter that is required for normal spore germination in inosine. The germination properties of single and double mutants of B. cereus ATCC 10876 reveal that unlike GerN, which is required for all germination responses that involve the GerI germinant receptor, the GerT protein does not have a significant role in germination, although it is required for the residual GerI-mediated inosine germination response of a gerN mutant. In contrast, GerT has a significant role in outgrowth; gerT mutant spores do not outgrow efficiently under alkaline conditions and outgrow more slowly than the wild type in the presence of high NaCl concentrations. The GerT protein in B. cereus therefore contributes to the success of spore outgrowth from the germinated state during alkaline or Na+ stress.


Food Research ◽  
2019 ◽  
pp. 808-813
Author(s):  
Ubong A. ◽  
C.Y. New ◽  
L.C. Chai ◽  
Nur Fatihah A. ◽  
Nur Hasria K. ◽  
...  

Bacillus cereus spores are capable of surviving the harsh environment and more often, they cause great concern to the dairy industry. The current research was conducted to study the effect of temperature on germination and growth of B. cereus spores in UHT chocolate milk; the study was carried out at 8°C, 25°C and 35°C over a span of seven days. The results showed that no growth was observed at 8°C. At 25°C, a rapid increase in growth was observed as early as Day 1, from an initial count of ten spores to 4.01 log10 CFU/mL. Meanwhile, at 35°C, the growth on Day 1 was more rapid in which the count promptly increased to 8.07 log10 CFU/mL. Analysis of graph trend showed that the number of vegetative cells decreased while the number of spores increased with incubation time due to nutrients exhaustion. This study fills up the data gap towards understanding the possible issues that might arise in the actual scenario and at the same time, suggests a suitable approach to minimize infection risk caused by B. cereus spores.


FEBS Letters ◽  
1985 ◽  
Vol 189 (2) ◽  
pp. 207-211 ◽  
Author(s):  
Richard P. Ambler ◽  
Margaret Daniel ◽  
Joan Fleming ◽  
Jose-Miguel Hermoso ◽  
Calvin Pang ◽  
...  

2020 ◽  
Vol 117 (37) ◽  
pp. 23165-23173 ◽  
Author(s):  
Robert S. Allen ◽  
Christina M. Gregg ◽  
Shoko Okada ◽  
Amratha Menon ◽  
Dawar Hussain ◽  
...  

To engineer Mo-dependent nitrogenase function in plants, expression of the structural proteins NifD and NifK will be an absolute requirement. Although mitochondria have been established as a suitable eukaryotic environment for biosynthesis of oxygen-sensitive enzymes such as NifH, expression of NifD in this organelle has proven difficult due to cryptic NifD degradation. Here, we describe a solution to this problem. Using molecular and proteomic methods, we found NifD degradation to be a consequence of mitochondrial endoprotease activity at a specific motif within NifD. Focusing on this functionally sensitive region, we designed NifD variants comprising between one and three amino acid substitutions and distinguished several that were resistant to degradation when expressed in both plant and yeast mitochondria. Nitrogenase activity assays of these resistant variants in Escherichia coli identified a subset that retained function, including a single amino acid variant (Y100Q). We found that other naturally occurring NifD proteins containing alternate amino acids at the Y100 position were also less susceptible to degradation. The Y100Q variant also enabled expression of a NifD(Y100Q)–linker–NifK translational polyprotein in plant mitochondria, confirmed by identification of the polyprotein in the soluble fraction of plant extracts. The NifD(Y100Q)–linker–NifK retained function in bacterial nitrogenase assays, demonstrating that this polyprotein permits expression of NifD and NifK in a defined stoichiometry supportive of activity. Our results exemplify how protein design can overcome impediments encountered when expressing synthetic proteins in novel environments. Specifically, these findings outline our progress toward the assembly of the catalytic unit of nitrogenase within mitochondria.


1986 ◽  
Vol 39 (6) ◽  
pp. 745-754 ◽  
Author(s):  
TAKAAKI NISHIKIORI ◽  
HIROSHI NAGANAWA ◽  
YASUHIKO MURAOKA ◽  
TAKAAKI AOYAGI ◽  
HAMAO UMEZAWA

Sign in / Sign up

Export Citation Format

Share Document