spore outgrowth
Recently Published Documents


TOTAL DOCUMENTS

64
(FIVE YEARS 9)

H-INDEX

21
(FIVE YEARS 1)

Molecules ◽  
2021 ◽  
Vol 26 (18) ◽  
pp. 5552
Author(s):  
Christian Anumudu ◽  
Abarasi Hart ◽  
Taghi Miri ◽  
Helen Onyeaka

Conventional thermal and chemical treatments used in food preservation have come under scrutiny by consumers who demand minimally processed foods free from chemical agents but microbiologically safe. As a result, antimicrobial peptides (AMPs) such as bacteriocins and nisin that are ribosomally synthesised by bacteria, more prominently by the lactic acid bacteria (LAB) have appeared as a potent alternative due to their multiple biological activities and represent a powerful strategy to prevent the development of spore-forming microorganisms. Unlike thermal methods, they are natural without an adverse impact on food organoleptic and nutritional attributes. AMPs such as nisin and bacteriocins are generally effective in eliminating spore-forming bacteria compared to the more resilient spore forms. However, in combination with other non-thermal treatments, such as high pressure, supercritical carbon dioxide, electric pulses, AMPs such as nisin has proven that the synergistic effect is effective in the inactivation of microbial spores through the disruption of the spore structure and prevention of spore outgrowth. The control of microbial spores in foods is essential in maintaining food safety and extension of shelf-life. Thus, exploration of the mechanisms of action of AMPs such as nisin is critical in their design and effective application in food industry. This review harmonises mechanisms of inactivation based information from published literature on utilising AMPs in the control of microbial spores in food. It highlights future perspectives in research and application in food processing.


Antibiotics ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 984
Author(s):  
Suvash Chandra Ojha ◽  
Matthew Phanchana ◽  
Phurt Harnvoravongchai ◽  
Surang Chankhamhaengdecha ◽  
Sombat Singhakaew ◽  
...  

In recent decades, the incidence of Clostridioides difficile infection (CDI) has remained high in both community and health-care settings. With the increasing rate of treatment failures and its ability to form spores, an alternative treatment for CDI has become a global priority. We used the microdilution assay to determine minimal inhibitory concentrations (MICs) of vancomycin and teicoplanin against 30 distinct C. difficile strains isolated from various host origins. We also examined the effect of drugs on spore germination and outgrowth by following the development of OD600. Finally, we confirmed the spore germination and cell stages by microscopy. We showed that teicoplanin exhibited lower MICs compared to vancomycin in all tested isolates. MICs of teicoplanin ranged from 0.03–0.25 µg/mL, while vancomycin ranged from 0.5–4 µg/mL. Exposure of C. difficile spores to broth supplemented with various concentrations of antimicrobial agents did not affect the initiation of germination, but the outgrowth to vegetative cells was inhibited by all test compounds. This finding was concordant with aberrant vegetative cells after antibiotic treatment observed by light microscopy. This work highlights the efficiency of teicoplanin for treatment of C. difficile through prevention of vegetative cell outgrowth.


2021 ◽  
Vol 22 (11) ◽  
pp. 5690
Author(s):  
Shakhinur Islam Mondal ◽  
Arzuba Akter ◽  
Lorraine A. Draper ◽  
R. Paul Ross ◽  
Colin Hill

Clostridioides difficile is a spore-forming enteric pathogen causing life-threatening diarrhoea and colitis. Microbial disruption caused by antibiotics has been linked with susceptibility to, and transmission and relapse of, C. difficile infection. Therefore, there is an urgent need for novel therapeutics that are effective in preventing C. difficile growth, spore germination, and outgrowth. In recent years bacteriophage-derived endolysins and their derivatives show promise as a novel class of antibacterial agents. In this study, we recombinantly expressed and characterized a cell wall hydrolase (CWH) lysin from C. difficile phage, phiMMP01. The full-length CWH displayed lytic activity against selected C. difficile strains. However, removing the N-terminal cell wall binding domain, creating CWH351—656, resulted in increased and/or an expanded lytic spectrum of activity. C. difficile specificity was retained versus commensal clostridia and other bacterial species. As expected, the putative cell wall binding domain, CWH1—350, was completely inactive. We also observe the effect of CWH351—656 on preventing C. difficile spore outgrowth. Our results suggest that CWH351—656 has therapeutic potential as an antimicrobial agent against C. difficile infection.


Foods ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 455
Author(s):  
Paula de Camargo Bertuso ◽  
Débora M. Drappé Mayer ◽  
Marcia Nitschke

Foodborne diseases (FBD) are a great problem worldwide, leading millions of people to seek medical help and to significant economic losses for industry. Among the agents implicated in FDB is Bacillus cereus, a Gram-positive, toxigenic and endospore-forming bacterium. In this study, rhamnolipid (RL) biosurfactant, celery oleoresin (OR) and limonene (LN) were evaluated as bio-based alternatives for controlling the growth of vegetative cells and endospores of B. cereus. To address their antimicrobial activity, the compounds were tested separately and in combination. Results demonstrate that, when combined with RL, both OR and LN have lower minimal inhibitory concentration (MIC) values and increased endospore inhibition potential. A percentage of endospore inhibition from 73% to 98%, corresponding to a 2.8–3.6 log reduction in spore outgrowth, was observed. RL inhibited B. cereus growth and endospore germination and potentially enhanced the antimicrobial efficacy of the natural hydrophobic compounds tested.


2020 ◽  
Vol 367 (17) ◽  
Author(s):  
D Levi Craft ◽  
George Korza ◽  
Yaqing Zhang ◽  
Jens Frindert ◽  
Andres Jäschke ◽  
...  

ABSTRACT Spores of Gram-positive bacteria contain 10s–1000s of different mRNAs. However, Bacillus subtilis spores contain only ∼ 50 mRNAs at > 1 molecule/spore, almost all transcribed only in the developing spore and encoding spore proteins. However, some spore mRNAs could be stabilized to ensure they are intact in dormant spores, perhaps to direct synthesis of proteins essential for spores’ conversion to a growing cell in germinated spore outgrowth. Recent work shows that some growing B. subtilis cell mRNAs contain a 5′-NAD cap. Since this cap may stabilize mRNA in vivo, its presence on spore mRNAs would suggest that maintaining some intact spore mRNAs is important, perhaps because they have a translational role in outgrowth. However, significant levels of only a few abundant spore mRNAs had a 5′-NAD cap, and these were not the most stable spore mRNAs and had likely been fragmented. Even higher levels of 5′-NAD-capping were found on a few low abundance spore mRNAs, but these mRNAs were present in only small percentages of spores, and had again been fragmented. The new data are thus consistent with spore mRNAs serving only as a reservoir of ribonucleotides in outgrowth.


2020 ◽  
Vol 69 (4) ◽  
pp. 631-639
Author(s):  
Abraham Joseph Pellissery ◽  
Poonam Gopika Vinayamohan ◽  
Kumar Venkitanarayanan

Introduction. Clostridioides difficile is an enteric pathogen that causes a serious toxin-mediated colitis in humans. Bacterial exotoxins and sporulation are critical virulence components that contribute to pathogenesis, and disease transmission and relapse, respectively. Therefore, reducing toxin production and sporulation could significantly minimize C. difficile pathogenicity and disease outcome in affected individuals. Aim. This study investigated the efficacy of a natural flavone glycoside, baicalin, in reducing toxin synthesis, sporulation and spore germination in C. difficile in vitro. Methodology. Hypervirulent C. difficile isolates BAA 1870 or 1803 were cultured in brain heart infusion broth with or without the subinhibitory concentration (SIC) of baicalin, and incubated at 37 °C for 24 h under strictly anaerobic conditions. The supernatant was harvested after 24 h for determining C. difficile toxin production by ELISA. In addition, a similar experiment was performed wherein samples were harvested for assessing total viable counts, and heat-resistant spore counts at 72 h of incubation. Furthermore, C. difficile spore germination and spore outgrowth kinetics, with or without baicalin treatment, was measured in a plate reader by recording optical density at 600 nm. Finally, the effect of baicalin on C. difficile toxin, sporulation and virulence-associated genes was investigated using real-time quantitative PCR. Results. The SIC of baicalin significantly reduced toxin synthesis, sporulation and spore outgrowth when compared to control. In addition, C. difficile genes critical for pathogenesis were significantly down-regulated in the presence of baicalin. Conclusion. Our results suggest that baicalin could potentially be used to control C. difficile , and warrant future studies in vivo.


2020 ◽  
Vol 86 (6) ◽  
Author(s):  
C. Trunet ◽  
N. Mtimet ◽  
A.-G. Mathot ◽  
F. Postollec ◽  
I. Leguerinel ◽  
...  

ABSTRACT Changes with time of a population of Bacillus weihenstephanensis KBAB4 and Bacillus licheniformis AD978 dormant spores into germinated spores and vegetative cells were followed by flow cytometry, at pH ranges of 4.7 to 7.4 and temperatures of 10°C to 37°C for B. weihenstephanensis and 18°C to 59°C for B. licheniformis. Incubation conditions lower than optimal temperatures or pH led to lower proportions of dormant spores able to germinate and extended time of germination, a lower proportion of germinated spores able to outgrow, an extension of their times of outgrowth, and an increase of the heterogeneity of spore outgrowth time. A model based on the strain growth limits was proposed to quantify the impact of incubation temperature and pH on the passage through each physiological stage. The heat treatment temperature or time acted independently on spore recovery. Indeed, a treatment at 85°C for 12 min or at 95°C for 2 min did not have the same impact on spore germination and outgrowth kinetics of B. weihenstephanensis despite the fact that they both led to a 10-fold reduction of the population. Moreover, acidic sporulation pH increased the time of outgrowth 1.2-fold and lowered the proportion of spores able to germinate and outgrow 1.4-fold. Interestingly, we showed by proteomic analysis that some proteins involved in germination and outgrowth were detected at a lower abundance in spores produced at pH 5.5 than in those produced at pH 7.0, maybe at the origin of germination and outgrowth behavior of spores produced at suboptimal pH. IMPORTANCE Sporulation and incubation conditions have an impact on the numbers of spores able to recover after exposure to sublethal heat treatment. Using flow cytometry, we were able to follow at a single-cell level the changes in the physiological states of heat-stressed spores of Bacillus spp. and to discriminate between dormant spores, germinated spores, and outgrowing vegetative cells. We developed original mathematical models that describe (i) the changes with time of the proportion of cells in their different states during germination and outgrowth and (ii) the influence of temperature and pH on the kinetics of spore recovery using the growth limits of the tested strains as model parameters. We think that these models better predict spore recovery after a sublethal heat treatment, a common situation in food processing and a concern for food preservation and safety.


2019 ◽  
Vol 68 (7) ◽  
pp. 1118-1128 ◽  
Author(s):  
Abraham Joseph Pellissery ◽  
Poonam Gopika Vinayamohan ◽  
Hsin-Bai Yin ◽  
Shankumar Mooyottu ◽  
Kumar Venkitanarayanan

2019 ◽  
Author(s):  
Bhagyashree Swarge ◽  
Martijs Jonker ◽  
Wishwas Abhyankar ◽  
Huub Hoefsloot ◽  
Chris G. de Koster ◽  
...  

AbstractBacillus subtilisforms highly resistant, metabolically inactive dormant spores upon nutrient limitation. These endospores pose challenges to the food and medical sectors. Spores reactivate their metabolism upon contact with germinants and develop into vegetative cells. The activation of the molecular machinery that triggers the progress of germination and spore outgrowth is still unsettled. To gain further insight in spore germination and outgrowth processes, the transcriptome and proteome changeover during spore germination and outgrowth to vegetative cells, was analysed.B. subtilistranscriptome analysis allow us to trace the different functional groups of genes expressed. For each time-point sample, the change in the spore proteome was quantitatively monitored relative to the reference proteome of15N metabolically labelled vegetative cells. We observed until the phase transition, i.e. completion of germination, no significant change in the proteome. We have identified 36 transcripts present abundantly in the dormant spores. This number is in close agreement with the previous findings. These transcripts mainly belong to the genes encoding small acid soluble proteins (sspE, sspO, sspI, sspK, sspF) and proteins with uncharacterized functions. We observed in total 3152 differentially expressed genes, but ‘only’ 323 differentially expressed proteins (total 451 proteins identified and quantified). Our data shows that 173 proteins from dormant spores, both spore unique proteins and protein shared with vegetative cells, are lost during the phase transitioning period. This loss is in addition to the active protein degradation, undertaken by the spore proteases such as Gpr, as germination and outgrowth proceeds. Further analysis is required to functionally interpret the observed protein loss. The observed diverse timing of the synthesis of different protein sets reveals a putative core-strategy of the revival of ‘life’ starting from theB. subtilisspore.


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Miseon Park ◽  
Fatemeh Rafii

Clostridium perfringensis the second most common cause of bacterial foodborne illness in the United States, with nearly a million cases each year.C. perfringensenterotoxin (CPE), produced during sporulation, damages intestinal epithelial cells by pore formation, which results in watery diarrhea. The effects of low concentrations of nisin and bile acids on sporulation and toxin production were investigated inC. perfringensSM101, which carries an enterotoxin gene on the chromosome, in a nutrient-rich medium. Bile acids and nisin increased production of enterotoxin in cultures; bile acids had the highest effect. Both compounds stimulated the transcription of enterotoxin and sporulation-related genes and production of spores during the early growth phase. They also delayed spore outgrowth and nisin was more inhibitory. Bile acids and nisin enhanced enterotoxin production in some but not all otherC. perfringensisolates tested. Low concentrations of bile acids and nisin may act as a stress signal for the initiation of sporulation and the early transcription of sporulation-related genes in some strains ofC. perfringens, which may result in increased strain-specific production of enterotoxin in those strains. This is the first report showing that nisin and bile acids stimulated the transcription of enterotoxin and sporulation-related genes in a nutrient-rich bacterial culture medium.


Sign in / Sign up

Export Citation Format

Share Document