High field magnetisation studies in some rare earth based amorphous ribbons

1995 ◽  
Vol 140-144 ◽  
pp. 355-356 ◽  
Author(s):  
R. Krishnan ◽  
H. Lassri ◽  
L. Driouch
Author(s):  
T. F. Kelly ◽  
P. J. Lee ◽  
E. E. Hellstrom ◽  
D. C. Larbalestier

Recently there has been much excitement over a new class of high Tc (>30 K) ceramic superconductors of the form A1-xBxCuO4-x, where A is a rare earth and B is from Group II. Unfortunately these materials have only been able to support small transport current densities 1-10 A/cm2. It is very desirable to increase these values by 2 to 3 orders of magnitude for useful high field applications. The reason for these small transport currents is as yet unknown. Evidence has, however, been presented for superconducting clusters on a 50-100 nm scale and on a 1-3 μm scale. We therefore planned a detailed TEM and STEM microanalysis study in order to see whether any evidence for the clusters could be seen.A La1.8Sr0.2Cu04 pellet was cut into 1 mm thick slices from which 3 mm discs were cut. The discs were subsequently mechanically ground to 100 μm total thickness and dimpled to 20 μm thickness at the center.


Author(s):  
Bagai-ool Yu. Saryg-ool ◽  
Lidiya N. Bukreeva ◽  
Irina N. Myagkaya ◽  
Aleksandr V. Tolstov ◽  
Elena V. Lazareva ◽  
...  

Influence of sample pretreatment on the analysis of the high contents of rare earth (REE) and high field strength (HFSE) elements in geological samples by inductively coupled plasma atomic emission spectrometry (ICP-AES) and inductively coupled plasma mass spectrometry (ICP-MS) was studied. The rocks and rich ores of the Tomtor Nb-REE deposit were explored. Complete dissolution of the geological samples with a high content of “refractory” minerals has been achieved using fusion with a sodium peroxide. The results obtained by ICP-AES and ICP-MS after chemical dissolution are comparable with the results obtained by the XRF-SR without chemical pretreatment


1978 ◽  
Vol 17 (5) ◽  
pp. 2324-2327 ◽  
Author(s):  
L. W. Roeland ◽  
P. Touborg

1989 ◽  
Vol 162-164 ◽  
pp. 1361-1362 ◽  
Author(s):  
A.M. Kadomtseva ◽  
N.P. Kolmakova ◽  
I.B. Krynetskii ◽  
R.Z. Levitin ◽  
V.V. Snegirev ◽  
...  
Keyword(s):  

2020 ◽  
Author(s):  
Guoliang Zhang

<p>Deep sourced magmas play a key role in distribution of carbon in the Earth’s system. Oceanic hotspots rooted in deep mantle usually produce CO<sub>2</sub>-rich magmas. However, the association of CO<sub>2</sub> with the origin of these magmas remains unclear. Here we report geochemical analyses of a suite of volcanic rocks from the Caroline Seamount Chain formed by the deep-rooted Caroline hotspot in the western Pacific. The most primitive magmas have depletion of SiO<sub>2</sub> and high field strength elements and enrichment of rare earth elements that are in concert with mantle-derived primary carbonated melts. The carbonated melts show compositional variations that indicate reactive evolution within the overlying mantle lithosphere and obtained depleted components from the lithospheric mantle. The carbonated melts were de-carbonated and modified to oceanic alkali basalts by precipitation of perovskite, apatite and ilmenite that significantly decreased the concentrations of rare earth elements and high field strength elements. These magmas experienced a stage of non-reactive fractional crystallization after the reactive evolution was completed. Thus, the carbonated melts would experience two stages, reactive and un-reactive, of evolution during their transport through in thick oceanic lithospheric mantle. We suggest that the mantle lithosphere plays a key role in de-carbonation and conversion of deep-sourced carbonated melts to alkali basalts. This work was financially supported by the National Natural Science Foundation of China (91858206, 41876040).</p>


Sign in / Sign up

Export Citation Format

Share Document