Chitinase, a new enzyme in octopus saliva

Author(s):  
M.S. Grisley ◽  
P.R. Boyle
Keyword(s):  
2021 ◽  
Vol 22 (6) ◽  
pp. 3041
Author(s):  
Gheorghita Menghiu ◽  
Vasile Ostafe ◽  
Radivoje Prodanović ◽  
Rainer Fischer ◽  
Raluca Ostafe

Chitinases catalyze the degradation of chitin, a polymer of N-acetylglucosamine found in crustacean shells, insect cuticles, and fungal cell walls. There is great interest in the development of improved chitinases to address the environmental burden of chitin waste from the food processing industry as well as the potential medical, agricultural, and industrial uses of partially deacetylated chitin (chitosan) and its products (chito-oligosaccharides). The depolymerization of chitin can be achieved using chemical and physical treatments, but an enzymatic process would be more environmentally friendly and more sustainable. However, chitinases are slow-acting enzymes, limiting their biotechnological exploitation, although this can be overcome by molecular evolution approaches to enhance the features required for specific applications. The two main goals of this study were the development of a high-throughput screening system for chitinase activity (which could be extrapolated to other hydrolytic enzymes), and the deployment of this new method to select improved chitinase variants. We therefore cloned and expressed the Bacillus licheniformis DSM8785 chitinase A (chiA) gene in Escherichia coli BL21 (DE3) cells and generated a mutant library by error-prone PCR. We then developed a screening method based on fluorescence-activated cell sorting (FACS) using the model substrate 4-methylumbelliferyl β-d-N,N′,N″-triacetyl chitotrioside to identify improved enzymes. We prevented cross-talk between emulsion compartments caused by the hydrophobicity of 4-methylumbelliferone, the fluorescent product of the enzymatic reaction, by incorporating cyclodextrins into the aqueous phases. We also addressed the toxicity of long-term chiA expression in E. coli by limiting the reaction time. We identified 12 mutants containing 2–8 mutations per gene resulting in up to twofold higher activity than wild-type ChiA.


2021 ◽  
Author(s):  
Yang Han ◽  
ERIN B TAYLOR ◽  
DAWN LUTHE

Abstract A large percentage of crop loss is due to insect damage yearly, especially caterpillar damage. Plant chitinases are considered excellent candidates to combat these insects since they can catalyze chitin degradation in peritrophic matrix (PM), an important protective structure in caterpillar midgut. Compared to chemical insecticides, chitinases could improve host plant resistance and be both economically and environmentally advantageous. The focus of this research was to find chitinase candidates that could improve plant resistance by effectively limiting caterpillar damage. Five classes of endochitinase (I-V) genes were characterized in the maize genome, and we further isolated and cloned four chitinase genes (chitinase A, chitinase B, chitinase I, and PRm3) present in two maize (Zea mays L.) inbred lines Mp708 and Tx601, with different levels of resistance to caterpillar pests. Further, we investigated the role of these maize chitinases in response to fall armyworm (Spodoptera frugiperda, FAW) attacks. Results from gene expression and enzyme assays from maize leaves indicated that both chitinase transcript abundance and enzymatic activity increased in response to FAW feeding and mechanical wounding. Furthermore, chitinase retained activity inside the caterpillar’s midgut since specific activity was detected in both the food bolus and frass. When examined under scanning electron microscopy, PMs from Tx601-fed caterpillars showed structural damage when compared to diet controls. Analysis of chitinase transcript abundance after caterpillar feeding and proteomic analysis of maize leaf trichomes in the two inbreds suggested that the chitinase PRm3 in Tx601 has potential insecticidal properties.


2016 ◽  
Vol 46 (2) ◽  
pp. 149-158 ◽  
Author(s):  
Ariana Alves Rodrigues ◽  
Marcus Vinicius Forzani ◽  
Renan de Souza Soares ◽  
Sergio Tadeu Sibov ◽  
José Daniel Gonçalves Vieira

ABSTRACT Microorganisms play a vital role in maintaining soil fertility and plant health. They can act as biofertilizers and increase the resistance to biotic and abiotic stress. This study aimed at isolating and characterizing plant growth-promoting bacteria associated with sugarcane, as well as assessing their ability to promote plant growth. Endophytic bacteria from leaf, stem, root and rhizosphere were isolated from the RB 867515 commercial sugarcane variety and screened for indole acetic acid (IAA) production, ability to solubilize phosphate, fix nitrogen and produce hydrogen cyanide (HCN), ammonia and the enzymes pectinase, cellulase and chitinase. A total of 136 bacteria were isolated, with 83 of them presenting some plant growth mechanism: 47 % phosphate solubilizers, 26 % nitrogen fixers and 57 % producing IAA, 0.7 % HCN and chitinase, 45 % ammonia, 30 % cellulose and 8 % pectinase. The seven best isolates were tested for their ability to promote plant growth in maize. The isolates tested for plant growth promotion belong to the Enterobacteriaceae family and the Klebsiella, Enterobacter and Pantoea genera. Five isolates promoted plant growth in greenhouse experiments, showing potential as biofertilizers.


2008 ◽  
Vol 162 (3) ◽  
pp. 491-499 ◽  
Author(s):  
Chomphunuch Songsiriritthigul ◽  
Supansa Pantoom ◽  
Adeleke H. Aguda ◽  
Robert C. Robinson ◽  
Wipa Suginta

FEBS Journal ◽  
2005 ◽  
Vol 272 (13) ◽  
pp. 3376-3386 ◽  
Author(s):  
Wipa Suginta ◽  
Archara Vongsuwan ◽  
Chomphunuch Songsiriritthigul ◽  
Jisnuson Svasti ◽  
Heino Prinz

2009 ◽  
Vol 73 (3) ◽  
pp. 733-735 ◽  
Author(s):  
Shigekazu YANO ◽  
Arata HONDA ◽  
Nopakarn RATTANAKIT-CHANDET ◽  
Yuta NODA ◽  
Mamoru WAKAYAMA ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document