v genes
Recently Published Documents


TOTAL DOCUMENTS

212
(FIVE YEARS 16)

H-INDEX

43
(FIVE YEARS 4)

2021 ◽  
Vol 12 ◽  
Author(s):  
Stephanie J. Hanna ◽  
Danijela Tatovic ◽  
Terri C. Thayer ◽  
Colin M. Dayan

In the past few years, huge advances have been made in techniques to analyse cells at an individual level using RNA sequencing, and many of these have precipitated exciting discoveries in the immunology of type 1 diabetes (T1D). This review will cover the first papers to use scRNAseq to characterise human lymphocyte phenotypes in T1D in the peripheral blood, pancreatic lymph nodes and islets. These have revealed specific genes such as IL-32 that are differentially expressed in islet –specific T cells in T1D. scRNAseq has also revealed wider gene expression patterns that are involved in T1D and can predict its development even predating autoantibody production. Single cell sequencing of TCRs has revealed V genes and CDR3 motifs that are commonly used to target islet autoantigens, although truly public TCRs remain elusive. Little is known about BCR repertoires in T1D, but scRNAseq approaches have revealed that insulin binding BCRs commonly use specific J genes, share motifs between donors and frequently demonstrate poly-reactivity. This review will also summarise new developments in scRNAseq technology, the insights they have given into other diseases and how they could be leveraged to advance research in the type 1 diabetes field to identify novel biomarkers and targets for immunotherapy.


2021 ◽  
Vol 12 ◽  
Author(s):  
Shiva Dahal-Koirala ◽  
Louise Fremgaard Risnes ◽  
Ralf Stefan Neumann ◽  
Asbjørn Christophersen ◽  
Knut E. A. Lundin ◽  
...  

Gluten-specific CD4+ T cells are drivers of celiac disease (CeD). Previous studies of gluten-specific T-cell receptor (TCR) repertoires have found public TCRs shared across multiple individuals, biased usage of particular V-genes and conserved CDR3 motifs. The CDR3 motifs within the gluten-specific TCR repertoire, however, have not been systematically investigated. In the current study, we analyzed the largest TCR database of gluten-specific CD4+ T cells studied so far consisting of TCRs of 3122 clonotypes from 63 CeD patients. We established a TCR database from CD4+ T cells isolated with a mix of HLA-DQ2.5:gluten tetramers representing four immunodominant gluten epitopes. In an unbiased fashion we searched by hierarchical clustering for common CDR3 motifs among 2764 clonotypes. We identified multiple CDR3α, CDR3β, and paired CDR3α:CDR3β motif candidates. Among these, a previously known conserved CDR3β R-motif used by TRAV26-1/TRBV7-2 TCRs specific for the DQ2.5-glia-α2 epitope was the most prominent motif. Furthermore, we identified the epitope specificity of altogether 16 new CDR3α:CDR3β motifs by comparing with TCR sequences of 231 T-cell clones with known specificity and TCR sequences of cells sorted with single HLA-DQ2.5:gluten tetramers. We identified 325 public TCRα and TCRβ sequences of which 145, 102 and 78 belonged to TCRα, TCRβ and paired TCRαβ sequences, respectively. While the number of public sequences was depended on the number of clonotypes in each patient, we found that the proportion of public clonotypes from the gluten-specific TCR repertoire of given CeD patients appeared to be stable (median 37%). Taken together, we here demonstrate that the TCR repertoire of CD4+ T cells specific to immunodominant gluten epitopes in CeD is diverse, yet there is clearly biased V-gene usage, presence of public TCRs and existence of conserved motifs of which R-motif is the most prominent.


2021 ◽  
Author(s):  
Sara Suliman ◽  
Lars Kjer-Nielsen ◽  
Sarah K. Iwany ◽  
Kattya Lopez Tamara ◽  
Liyen Loh ◽  
...  

AbstractMucosal-associated invariant T (MAIT) cells are innate-like T cells that are highly abundant in human blood and tissues. Most MAIT cells have an invariant T cell receptor (TCR) α chain that uses TRAV1-2 joined to TRAJ33/20/12 and recognize metabolites from bacterial riboflavin synthesis bound to the antigen-presenting molecule, MR1. Recently, our attempts to identify alternative MR1-presented antigens led to the discovery of rare MR1-restricted T cells with non-TRAV1-2 TCRs. Because altered antigen specificity is likely to lead to altered affinity for the most potent known antigen, 5-(2-oxopropylideneamino)-6-D-ribitylaminouracil (5-OP-RU), we performed bulk TCRα and β chain sequencing, and single cell-based paired TCR sequencing, on T cells that bound the MR1-5-OP-RU tetramer, but with differing intensities. Bulk sequencing showed that use of V genes other than TRAV1-2 was enriched among MR1-5-OP-RU tetramerlow cells. Whereas we initially interpreted these as diverse MR1-restricted TCRs, single cell TCR sequencing revealed that cells expressing atypical TCRα chains also co-expressed an invariant MAIT TCRα chain. Transfection of each non-TRAV1-2 TCRα chain with the TCRβ chain from the same cell demonstrated that the non-TRAV1-2 TCR did not bind the MR1-5-OP-RU tetramer. Thus, dual TCRα chain expression in human T cells and competition for the endogenous β chain explains the existence of some MR1-5-OP-RU tetramerlow T cells. The discovery of simultaneous expression of canonical and non-canonical TCRs on the same T cell means that claims of roles for non-TRAV1-2 TCR in MR1 response must be validated by TCR transfer-based confirmation of antigen specificity.


2021 ◽  
Vol 11 ◽  
Author(s):  
Carolyn H. Rogers ◽  
Olga Mielczarek ◽  
Anne E. Corcoran

A functional adaptive immune system must generate enormously diverse antigen receptor (AgR) repertoires from a limited number of AgR genes, using a common mechanism, V(D)J recombination. The AgR loci are among the largest in the genome, and individual genes must overcome huge spatial and temporal challenges to co-localize with optimum variability. Our understanding of the complex mechanisms involved has increased enormously, due in part to new technologies for high resolution mapping of AgR structure and dynamic movement, underpinning mechanisms, and resulting repertoires. This review will examine these advances using the paradigm of the mouse immunoglobulin heavy chain (Igh) locus. We will discuss the key regulatory elements implicated in Igh locus structure. Recent next generation repertoire sequencing methods have shown that local chromatin state at V genes contribute to recombination efficiency. Next on the multidimensional scale, we will describe imaging studies that provided the first picture of the large-scale dynamic looping and contraction the Igh locus undergoes during recombination. We will discuss chromosome conformation capture (3C)-based technologies that have provided higher resolution pictures of Igh locus structure, including the different models that have evolved. We will consider the key transcription factors (PAX5, YY1, E2A, Ikaros), and architectural factors, CTCF and cohesin, that regulate these processes. Lastly, we will discuss a plethora of recent exciting mechanistic findings. These include Rag recombinase scanning for convergent RSS sequences within DNA loops; identification of Igh loop extrusion, and its putative role in Rag scanning; the roles of CTCF, cohesin and cohesin loading factor, WAPL therein; a new phase separation model for Igh locus compartmentalization. We will draw these together and conclude with some horizon-scanning and unresolved questions.


2021 ◽  
Author(s):  
Yang Han ◽  
ERIN B TAYLOR ◽  
DAWN LUTHE

Abstract A large percentage of crop loss is due to insect damage yearly, especially caterpillar damage. Plant chitinases are considered excellent candidates to combat these insects since they can catalyze chitin degradation in peritrophic matrix (PM), an important protective structure in caterpillar midgut. Compared to chemical insecticides, chitinases could improve host plant resistance and be both economically and environmentally advantageous. The focus of this research was to find chitinase candidates that could improve plant resistance by effectively limiting caterpillar damage. Five classes of endochitinase (I-V) genes were characterized in the maize genome, and we further isolated and cloned four chitinase genes (chitinase A, chitinase B, chitinase I, and PRm3) present in two maize (Zea mays L.) inbred lines Mp708 and Tx601, with different levels of resistance to caterpillar pests. Further, we investigated the role of these maize chitinases in response to fall armyworm (Spodoptera frugiperda, FAW) attacks. Results from gene expression and enzyme assays from maize leaves indicated that both chitinase transcript abundance and enzymatic activity increased in response to FAW feeding and mechanical wounding. Furthermore, chitinase retained activity inside the caterpillar’s midgut since specific activity was detected in both the food bolus and frass. When examined under scanning electron microscopy, PMs from Tx601-fed caterpillars showed structural damage when compared to diet controls. Analysis of chitinase transcript abundance after caterpillar feeding and proteomic analysis of maize leaf trichomes in the two inbreds suggested that the chitinase PRm3 in Tx601 has potential insecticidal properties.


2020 ◽  
Vol 11 ◽  
Author(s):  
Wei-Li Ling ◽  
Chinh Tran-To Su ◽  
Wai-Heng Lua ◽  
Jun-Jie Poh ◽  
Yuen-Ling Ng ◽  
...  

Boosting the production of recombinant therapeutic antibodies is crucial in both academic and industry settings. In this work, we investigated the usage of varying signal peptides by antibody V-genes and their roles in recombinant transient production, systematically comparing myeloma and the native signal peptides of both heavy and light chains in 168 antibody permutation variants. We found that amino acids count and types (essential or non-essential) were important factors in a logistic regression equation model for predicting transient co-transfection protein production rates. Deeper analysis revealed that the culture media were often incomplete and that the supplementation of essential amino acids can improve the recombinant protein yield. While these findings are derived from transient HEK293 expression, they also provide insights to the usage of the large repertoire of antibody signal peptides, where by varying the number of specific amino acids in the signal peptides attached to the variable regions, bottlenecks in amino acid availability can be mitigated.


Author(s):  
Christoph Kreer ◽  
Matthias Zehner ◽  
Timm Weber ◽  
Cornelius Rohde ◽  
Sandro Halwe ◽  
...  

SUMMARYThe SARS-CoV-2 pandemic has unprecedented implications for public health, social life, and world economy. Since approved drugs and vaccines are not available, new options for COVID-19 treatment and prevention are highly demanded. To identify SARS-CoV-2 neutralizing antibodies, we analysed the antibody response of 12 COVID-19 patients from 8 to 69 days post diagnosis. By screening 4,313 SARS-CoV-2-reactive B cells, we isolated 255 antibodies from different time points as early as 8 days post diagnosis. Among these, 28 potently neutralized authentic SARS-CoV-2 (IC100 as low as 0.04 μg/ml), showing a broad spectrum of V genes and low levels of somatic mutations. Interestingly, potential precursors were identified in naïve B cell repertoires from 48 healthy individuals that were sampled before the COVID-19 pandemic. Our results demonstrate that SARS-CoV-2 neutralizing antibodies are readily generated from a diverse pool of precursors, fostering the hope of rapid induction of a protective immune response upon vaccination.


Author(s):  
Sandra C. A. Nielsen ◽  
Fan Yang ◽  
Ramona A. Hoh ◽  
Katherine J. L. Jackson ◽  
Katharina Roeltgen ◽  
...  

Abstract During virus infection B cells are critical for the production of antibodies and protective immunity. Establishment of a diverse antibody repertoire occurs by rearrangement of germline DNA at the immunoglobulin heavy and light chain loci to encode the membrane-bound form of antibodies, the B cell antigen receptor. Little is known about the B cells and antigen receptors stimulated by the novel human coronavirus SARS-CoV-2. Here we show that the human B cell compartment in patients with diagnostically confirmed SARS-CoV-2 and clinical COVID-19 is rapidly altered with the early recruitment of B cells expressing a limited subset of V genes, and extensive activation of IgG and IgA subclasses without significant somatic mutation. We detect expansion of B cell clones as well as convergent antibodies with highly similar sequences across SARS-CoV-2 patients, highlighting stereotyped naïve responses to this virus. A shared convergent B cell clonotype in SARS-CoV-2 infected patients was previously seen in patients with SARS. These findings offer molecular insights into shared features of human B cell responses to SARS-CoV-2 and other zoonotic spillover coronaviruses.


Sign in / Sign up

Export Citation Format

Share Document