The performance of a coiled finned-tube heat-exchanger submerged in a hot-water store: The effect of the exchanger's orientation

1991 ◽  
Vol 38 (1) ◽  
pp. 1-19 ◽  
Author(s):  
R. Mote ◽  
S.D. Probert ◽  
D. Nevrala
2018 ◽  
Vol 6 (3) ◽  
pp. 1-12
Author(s):  
Kamil Abdul Hussien

Abstract-The present work investigates the enhancement of heat transfer by using different number of circular fins (8, 10, 12, 16, and 20) in double tube counter flow heat exchanger experimentally. The fins are made of copper with dimensions 66 mm OD, 22 mm ID and 1 mm thickness. Each fin has three of 14 mm diameter perforations located at 120o from each to another. The fins are fixed on a straight smooth copper tube of 1 m length, 19.9 mm ID and 22.2 mm OD. The tube is inserted inside the insulated PVC tube of 100 mm ID. The cold water is pumped around the finned copper tube, inside the PVC, at mass flow rates range (0.01019 - 0.0219) kg/s. The Reynold's number of hot water ranges (640 - 1921). The experiment results are obtained using six double tube heat exchanger (1 smooth tube and the other 5 are finned one). The results, illustrated that the heat transfer coefficient proportionally with the number of fin. The results also showed that the enhancement ratio of heat transfer for finned tube is higher than for smooth tube with (9.2, 10.2, 11.1, 12.1 13.1) times for number of fins (8, 10, 12, 16 and 20) respectively.


Energies ◽  
2020 ◽  
Vol 13 (20) ◽  
pp. 5408
Author(s):  
Zuoqin Qian ◽  
Qiang Wang ◽  
Song Lv

Thermal hydraulic performance of the fin-and-tube heat exchanger is presented in this paper. The purpose of this investigation was to investigate the heat transfer mechanism and flow characteristics in the finned tube heat exchanger with streamline tube. The streamline tube in this paper had the streamline cross section which was composed of a semicircle and a half diamond. Three-dimensional numerical simulation was presented and validated by the experiment and the other numerical simulation from public articles. The present simulation had good agreement with the experimental results. The difference of the j factor and f factor between the experimental results and present simulation results by k-ε-enhance model was less than 7.6%. The geometrical parameters were considered as every single variable to investigate the thermal hydraulic performance. The results showed that smaller transversal and larger tube pitch provided greater compactness and better thermal performance. Moreover, a larger angle was not only beneficial to enhance the thermal performance, but also helpful to improve the overall performance. Secondly, the effects of angle on the heat transfer performance and fluid flow characteristics were investigated as the perimeter kept constant. It was shown that the overall performance of the streamline tube was better than the circular tube. Lastly, the entropy generation including frictional entropy generation and the thermal entropy generation were analyzed. It can be concluded that by using the streamline tube, the wake region can be obviously reduced, and thermal performance can be improved.


2016 ◽  
Vol 37 (2) ◽  
pp. 3-22 ◽  
Author(s):  
Pavan Kumar Konchada ◽  
Vinay Pv ◽  
Varaprasad Bhemuni

AbstractThe presence of nanoparticles in heat exchangers ascertained increment in heat transfer. The present work focuses on heat transfer in a longitudinal finned tube heat exchanger. Experimentation is done on longitudinal finned tube heat exchanger with pure water as working fluid and the outcome is compared numerically using computational fluid dynamics (CFD) package based on finite volume method for different flow rates. Further 0.8% volume fraction of aluminum oxide (Al2O3) nanofluid is considered on shell side. The simulated nanofluid analysis has been carried out using single phase approach in CFD by updating the user-defined functions and expressions with thermophysical properties of the selected nanofluid. These results are thereafter compared against the results obtained for pure water as shell side fluid. Entropy generated due to heat transfer and fluid flow is calculated for the nanofluid. Analysis of entropy generation is carried out using the Taguchi technique. Analysis of variance (ANOVA) results show that the inlet temperature on shell side has more pronounced effect on entropy generation.


Sign in / Sign up

Export Citation Format

Share Document