Elastic stress analysis of two oblique intersecting cylindrical shells subjected to internal pressure

1988 ◽  
Vol 31 (4) ◽  
pp. 295-312 ◽  
Author(s):  
Huei-Lin Chien ◽  
Shao-Jun Wu
1993 ◽  
Vol 115 (3) ◽  
pp. 275-282 ◽  
Author(s):  
V. N. Skopinsky

This paper presents the numerical approach for the stress analysis of the intersecting shells. For a systematic study of this problem, the classification of the model joints is introduced. Stress analysis has been made with the application of the finite element method based on the modified mixed formulation. The developed special-purpose computer program SAIS is used for elastic stress analysis of the model joints of the intersecting shells. Comparison of the calculated and experimental results for ORNL-1 model are presented for internal pressure and moment loadings. The parametric study of the model joints of the intersecting cylindrical shells under internal pressure loading was performed. The presented results show the effects of changing various geometric and angular parameters on the maximum effective stresses in the shells.


1981 ◽  
Vol 103 (1) ◽  
pp. 107-111
Author(s):  
D. P. Updike

Elastic stress analysis of a right angle tee branch pipe connection of two pipes of identical diameter and thickness connected through 45-deg chamfer corner sections is developed for internal pressure loading. Stresses in the crotch portion of the vessel are determined. These results are presented in the form of a table of factors useful for rapid calculation of approximate values of the peak stresses. The existence of a structurally optimum size of chamfer is demonstrated.


2010 ◽  
Vol 132 (3) ◽  
Author(s):  
Ming-De Xue ◽  
Qing-Hai Du ◽  
Keh-Chih Hwang ◽  
Zhi-Hai Xiang

An improved version of the analytical solutions by Xue, Hwang and co-workers (1991, “Some Results on Analytical Solution of Cylindrical Shells With Large Opening,” ASME J. Pressure Vessel Technol., 113, 297–307; 1991, “The Stress Analysis of Cylindrical Shells With Rigid Inclusions Having a Large Ratio of Radii,” SMiRT 11 Transactions F, F05/2, 85–90; 1995, “The Thin Theoretical Solution for Cylindrical Shells With Large Openings,” Acta Mech. Sin., 27(4), pp. 482–488; 1995, “Stresses at the Intersection of Two Cylindrical Shells,” Nucl. Eng. Des., 154, 231–238; 1996, “A Reinforcement Design Method Based on Analysis of Large Openings in Cylindrical Pressure Vessels,” ASME J. Pressure Vessel Technol., 118, 502–506; 1999, “Analytical Solution for Cylindrical Thin Shells With Normally Intersecting Nozzles Due to External Moments on the Ends of Shells,” Sci. China, Ser. A: Math., Phys., Astron., 42(3), 293–304; 2000, “Stress Analysis of Cylindrical Shells With Nozzles Due to External Run Pipe Moments,” J. Strain Anal. Eng. Des., 35, 159–170; 2004, “Analytical Solution of Two Intersecting Cylindrical Shells Subjected to Transverse Moment on Nozzle,” Int. J. Solids Struct., 41(24–25), 6949–6962; 2005, “A Thin Shell Theoretical Solution for Two Intersecting Cylindrical Shells Due to External Branch Pipe Moments,” ASME J. Pressure Vessel Technol., 127(4), 357–368; 2005, “Theoretical Stress Analysis of Two Intersecting Cylindrical Shells Subjected to External Loads Transmitted Through Branch Pipes,” Int. J. Solids Struct., 42, 3299–3319) for two normally intersecting cylindrical shells is presented, and the applicable ranges of the theoretical solutions are successfully extended from d/D≤0.8 and λ=d/(DT)1/2≤8 to d/D≤0.9 and λ≤12. The thin shell theoretical solution is obtained by solving a complex boundary value problem for a pair of fourth-order complex-valued partial differential equations (exact Morley equations (Morley, 1959, “An Improvement on Donnell’s Approximation for Thin Walled Circular Cylinders,” Q. J. Mech. Appl. Math. 12, 89–91; Simmonds, 1966, “A Set of Simple, Accurate Equations for Circular Cylindrical Elastic Shells,” Int. J. Solids Struct., 2, 525–541)) for the shell and the nozzle. The accuracy of results is improved by some additional terms to the expressions for resultant forces and moments in terms of complex-valued displacement-stress function. The theoretical stress concentration factors due to internal pressure obtained by the improved expressions are in agreement with previously published test results. The theoretical results discussed and presented herein are in sufficient agreement with those obtained from three dimensional finite element analyses for all the seven load cases, i.e., internal pressure and six external branch pipe load components involving three orthogonal forces and the respective three orthogonal moments.


Author(s):  
Ming-De Xue ◽  
Qing-Hai Du ◽  
Dong-Feng Li ◽  
Keh-Chih Hwang

An identical stress analysis method based on the thin shell theory is carried out for cylindrical shells with normally intersecting nozzles subjected to internal pressure and six kinds of external branch pipe loads involving axial tension, two kinds of transverse shear forces, longitudinal and circumferential bending and torsion moments. The thin shell theoretical solution is obtained based on the Morley equation instead of the Donnell shallow shell equation. The accurate continuity conditions at the intersecting curve, which is a complicated space curve, are adopted. The presented results are verified by three-dimensional finite element method (FEM). The theoretical solution can be applied to d/D ≤ 0.8, λ = d/DT ≤ 12 and d/D ≤ t/T ≤ 2 successfully. The solutions are in good agreement with WRC Bulletin 297 when diameter ratio is small. In the paper some typical design curves calculated by the theoretical solutions are presented and their applicable ranges are greatly expanded in comparison with current design methods.


1996 ◽  
Vol 24 (4) ◽  
pp. 349-366 ◽  
Author(s):  
T-M. Wang ◽  
I. M. Daniel ◽  
K. Huang

Abstract An experimental stress-strain analysis by means of the Moiré method was conducted in the area of the tread and belt regions of tire sections. A special loading fixture was designed to support the tire section and load it in a manner simulating service loading and allowing for Moiré measurements. The specimen was loaded by imposing a uniform fixed deflection on the tread surface and increasing the internal pressure in steps. Moiré fringe patterns were recorded and analyzed to obtain strain components at various locations of interest. Maximum strains in the range of 1–7% were determined for an effective inflation pressure of 690 kPa (100 psi). These results were in substantial agreement with results obtained by a finite element stress analysis.


1981 ◽  
Vol 16 (3) ◽  
pp. 171-186 ◽  
Author(s):  
P Stanley ◽  
T D Campbell

Very thin cylindrical pressure vessels with torispherical end-closures have been tested under internal pressure until buckles developed in the knuckles of the ends. These were prototype vessels in an austenitic stainless steel. The preparation of the ends and the closed test vessels is outlined, and the instrumentation, test installation, and test procedure are described. Results are given and discussed for three typical ends (diameters 54, 81, and 108in.; thickness to diameter ratios 0.00237, 0.00158, and 0.00119). These include measured thickness and curvature distributions, strain data and the derived elastic stress indices, and pole deflection measurements. Some details of the observed time-dependent plasticity (or ‘cold creep’) are given. Details of two types of buckle that developed eventually in the vessel ends are also reported.


1970 ◽  
Vol 92 (4) ◽  
pp. 767-773 ◽  
Author(s):  
Jaroslaw Sobieszczanski

Single and multiple mitred bends are analyzed for stress and deformation due to inplane bending and internal pressure. Theory of cylindrical shells is used as a tool of analysis. Results show maximum stress at the elbow increased up to more than 400 percent of the stress predicted by elementary beam theory. Influence of the elbow on the self-compensation of the heated pipeline is discussed and the local reinforcements proposed. Solutions are presented as graphs which may be directly applied in design work.


Sign in / Sign up

Export Citation Format

Share Document