A simulation model for the dynamics of rice growth and development: Part II—The competition with weeds for nitrogen and light

1990 ◽  
Vol 32 (4) ◽  
pp. 367-392 ◽  
Author(s):  
B. Graf ◽  
A.P. Gutierrez ◽  
O. Rakotobe ◽  
P. Zahner ◽  
V. Delucchi
1990 ◽  
Vol 32 (4) ◽  
pp. 341-365 ◽  
Author(s):  
B. Graf ◽  
O. Rakotobe ◽  
P. Zahner ◽  
V. Delucchi ◽  
A.P. Gutierrez

Biology ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 309
Author(s):  
Showkat Ahmad Ganie ◽  
Anireddy S. N. Reddy

Improvements in yield and quality of rice are crucial for global food security. However, global rice production is substantially hindered by various biotic and abiotic stresses. Making further improvements in rice yield is a major challenge to the rice research community, which can be accomplished through developing abiotic stress-resilient rice varieties and engineering durable agrochemical-independent pathogen resistance in high-yielding elite rice varieties. This, in turn, needs increased understanding of the mechanisms by which stresses affect rice growth and development. Alternative splicing (AS), a post-transcriptional gene regulatory mechanism, allows rapid changes in the transcriptome and can generate novel regulatory mechanisms to confer plasticity to plant growth and development. Mounting evidence indicates that AS has a prominent role in regulating rice growth and development under stress conditions. Several regulatory and structural genes and splicing factors of rice undergo different types of stress-induced AS events, and the functional significance of some of them in stress tolerance has been defined. Both rice and its pathogens use this complex regulatory mechanism to devise strategies against each other. This review covers the current understanding and evidence for the involvement of AS in biotic and abiotic stress-responsive genes, and its relevance to rice growth and development. Furthermore, we discuss implications of AS for the virulence of different rice pathogens and highlight the areas of further research and potential future avenues to develop climate-smart and disease-resistant rice varieties.


EUGENIA ◽  
2011 ◽  
Vol 17 (1) ◽  
pp. 60
Author(s):  
Johannes E. X. Rogi ◽  
Siska J. Frans

The demand of wheat increases yearly in Indonesia. Therefore, Indonesia has imported wheat fromoverseas. Agronomically, wheat could be cultivated in Indonesia. Simulation model using ShieraryWheat ver 2.2 software developed by Handoko (1992) will be used in this studi. This software has beenvalidated by Rogi (1996) in several areas in Indonesia. This model has daily resolution which explainsinteraction between growth and development of wheat. Model inputs include weather elements such asradiation, temperature, humidity, wind and rainfall. Soil physical field capacity (water condition in thesoil), characteristic such as field capacity, wilt permanent point, and evaporation together with pH, totalnitrogen were incorporated in the model. Agronomical inputs such as irrigation, nitrogenous fertilizer,ground water and total nitrogen were used as hypothetical data. The research was aiming to assessthe best location and time for cultivated wheat ini North Sulawesi. The result showed that planted timein August had potential high yield followed by January, March, April, May, and Septemnber respectively.The suitable lacations for cultivated wheat in North Sulawesi were Tondano, Langowan, Tompaso,Tompaso Baru, and Kotamobagu. The best potential high yield was found in areas which had optimal ofair temperature and rainfall.Keywords : Wheat, Agronomically, Simulation model, Shierary Wheat Ver 2.0 ABSTRAKKebutuhan gandum yang terus meningkat setiap tahun di Indonesia dipenuhi dengan cara mengimpor,padahal secara agronomis gandum saat ini dapat dibudidayakan di daerah tropis dengan produksi yanglebih tinggi dan waktu panen yang lebih pendek. Penentuan daerah-daerah pengembangan Gandum diIndonesia seperti di Provinsi Sulawesi Utara penting untuk dilakukan dengan menggunakan modelsimulasi. Perangkat lunak Shierary Wheat Ver 2.0 yang dikembangkan Handoko tahun 1992 diMelbourne Australia dan divalidasi oleh Rogi (1996) dan telah dikalibrasi pada berbagai tempat diIndonesia. Model ini mempunyai resolusi harian yang menjelaskan proses interaksi antaraperkembangan dan pertumbuhan tanaman gandum. Input model terdiri dari unsur-unsur cuaca beruparadiasi matahari, suhu udara, kelembaban udara, kecepatan angin, dan curah hujan, sedangkan sifatfisik tanah (kapasitas lapang, titik layu permanen dan parameter evaporasi), serta sifat kimia tanah (pH,nitrogen total). Input agronomis berupa irigasi, pupuk nitrogen, kondisi awal berupa kadar air tanah dannitrogen total menggunakan data asumsi. Sehingga penelitian ini bertujuan untuk mendapatkan waktudan lokasi tanam yang terbaik untuk Tanam Gandum di Sulawesi Utara. Hasil penelitian mendapatkanbahwa Waktu tanam 1 Agustus mempunyai potensi hasil paling baik kemudian berturut-turut Januari,Maret, April, Mei dan September dengan lokasi yang sesuai adalah Tondano, Langowan, Tompaso,Tompaso Baru, dan Kotamobagu.


2001 ◽  
Vol 71 (3) ◽  
pp. 195-210 ◽  
Author(s):  
M.J Robertson ◽  
P.S Carberry ◽  
Y.S Chauhan ◽  
R Ranganathan ◽  
G.J O’Leary

1993 ◽  
Vol 48 (5) ◽  
pp. 831-834
Author(s):  
Changhan Qi ◽  
Xinyou Yin ◽  
Huaai Xie
Keyword(s):  

2007 ◽  
Vol 249 (3) ◽  
pp. 593-605 ◽  
Author(s):  
Mohammad Bannayan ◽  
Kazuhiko Kobayashi ◽  
Hassan Marashi ◽  
Gerrit Hoogenboom

Sign in / Sign up

Export Citation Format

Share Document