Models of sorghum and pearl millet to predict forage dry matter production in semi-arid Mexico. 2. Regression models

1995 ◽  
Vol 47 (2) ◽  
pp. 147-159 ◽  
Author(s):  
Alma D. Baez-Gonzalez ◽  
J.G.W. Jones
2020 ◽  
Vol 19 ◽  
pp. 14
Author(s):  
AMADEU REGITANO NETO ◽  
RAFAEL DANTAS DOS SANTOS

Green and dry matter production, along with grain yield and otheragronomic traits, were assessed in 44 sorghum genotypes. Two sets of genotypes were formed based on known plant height, aiming to evaluate green and dry matter production and grain yield, as well as to separate forage and grain sorghum genotypes. The evaluations were performed based on experiments with three replications, being one irrigated (drip system) in Petrolina, State of Pernambuco, and the other rainfed, in Nossa Senhora da Glória, state of Sergipe, Brazil. Sowing dates were July 30, 2016, in Nossa Senhora da Glória; July 13, 2017, and October 24, 2018, in Petrolina; with 117 and 128 days from sowing to harvest, respectively. Expressive forage production was observed in genotypes EP-17 and SF-11, which exceeded 120 t ha-1. BRS 506 produced 108 t ha-1, while 13F03(1141572), P-294, P-288, 2502 x 467, BRS Ponta Negra, and SF-15 presented green matter production ranging from 94 to 98.5 t ha-1. Dry matter production was highly correlated with green matter production, and SF-11 had the best performance of 45.5 t ha-1. The observed plant height was more expressive for forage sorghum genotypes, being this trait highly correlated with the green and dry matter. The best grain yield performance reached 13.4 and 10.3 t ha-1, values observed for 9910032 and BRS Ponta Negra, respectively. The results demonstrate the full adaptability of sorghum to the semi-arid environment and the feasibility to produce roughage and grains under irrigation in the Brazilian semi-arid region.


1998 ◽  
Vol 49 (2) ◽  
pp. 179 ◽  
Author(s):  
A. K. Borrell ◽  
A. L. Garside ◽  
S. Fukai ◽  
D. J. Reid

Production of flooded direct-seeded rice (Oryza sativa L.) in semi-arid tropical regions of northern Australia would be enhanced by increasing the efficiency of fertiliser nitrogen (N) use. Short-statured and early-maturing genotypes have replaced the taller and later genotypes in northern Australia, and they may respond differently to N. This paper reports the results of 4 experiments comparing the response of 3 rice genotypes differing in maturity and stature to 5 rates of applied nitrogen (0, 70, 140, 210, and 280 kg/ha) over 4 seasons (2 wet and 2 dry seasons) in the Burdekin River Irrigation Area, northern Australia. Grain yield varied among seasons and was negatively correlated with average daily mean temperature during the 30-day period before anthesis. The response of yield to N fertilisation was generally higher in the dry season. Panicle number was correlated with grain yield in both seasons, yet responded to N fertilisation only in the dry season. In 3 of 4 experiments, grain yield responded to the application of up to 70 kg N/ha, yielding about 750 g/m2. In only 1 dry season experiment did grain yield respond to the application of 140 kg N/ha, yielding about 930 g/m2. In this experiment, the response of grain yield to N rate also varied among genotypes such that yield in the early-maturing genotypes (Newbonnet and Lemont) was more responsive to N rates above 70 kg/ha than in the late-maturing genotype (Starbonnet). Of the 3 genotypes examined, highest yields were attained in Newbonnet (early-maturing, medium-statured) by combining high total dry matter production with high harvest index, indicating that this plant type may have an advantage in northern Australia. Yields in Lemont (early-maturing, short-statured) and Starbonnet (late-maturing, tall-statured) were limited by dry matter production and harvest index, respectively. There is some evidence that increased dry matter production in Newbonnet compared with Lemont was related to increased stem length. The evidence linking high harvest index with increased earliness in Newbonnet compared with Starbonnet is less compelling.


2018 ◽  
Vol 94 ◽  
pp. 1-11 ◽  
Author(s):  
Dongsheng Zhang ◽  
Guijuan Du ◽  
Zhanxiang Sun ◽  
Wei Bai ◽  
Qi Wang ◽  
...  

1981 ◽  
Vol 3 (1) ◽  
pp. 99
Author(s):  
VE Rogers

Dry matter production and plant density were measured after seeding lucerne: (Medicago rarii'a) into grassland at two sites in New South Wales having inearl annual rainfalls of 292 and 425 mm. Various methods of minimal tillage establishment were used. Sod-seeding failed to produce a satisfactory stand at either site, even where herbicide had been applied. Survival was best when lucerne was sown in furrows 15 cm wide, the lucerne density after five years being 8 plants ~n'~, or 80,000 plants ha-'. This treat- ment was also superior in dry matter production to the use of furrows of 5 and 10 an width, or to seeding after a single cultivation. The effect on production of a herbicide applied at sowing decreased with increasing width of furrow. The results of this study could also be relevant to the establishment of other species under rangeland conditions.


1984 ◽  
Vol 20 (2) ◽  
pp. 135-149 ◽  
Author(s):  
G. R. Squire ◽  
P. J. Gregory ◽  
J. L. Monteith ◽  
M. B. Russell ◽  
Piara Singh

SUMMARYAt Hyderabad, India, stands of pearl millet were grown after the monsoon (a) with no irrigation after establishment and (b) with irrigation as needed to avoid stress. Increases of dry matter and leaf area were determined by regular harvesting. The interception of radiation by the foliage, uptake of water from the soil and stomatal conductance were monitored. Before anthesis at 42 days after sowing (DAS), the rate of dry matter production and the transpiration rate in the unirrigated stand were about 80% of the corresponding rates for the irrigated control, mainly because of a smaller stomatal conductance from 30 DAS. After anthesis, the unirrigated stand grew little and used only 10% of the water transpired by the control. This large difference was partitioned between loss of leaf area and smaller stomatal conductance in the ratio of approximately 2:1. Radiation intercepted by foliage in the irrigated stand produced 2.0 g of dry matter per MJ compared with 2.5 g MJ−1 for the same variety growing in the monsoon, a difference consistent with a smaller stomatal conductance in drier air.


2013 ◽  
Vol 37 (6) ◽  
pp. 1628-1640 ◽  
Author(s):  
Carlos Alexandre Costa Crusciol ◽  
Jayme Ferrari Neto ◽  
Rogério Peres Soratto ◽  
Claudio Hideo Martins da Costa

In a no-tillage system, cover crops must be used that combine shoot dry matter production and nutrient recycling. The aim of this study was to evaluate shoot dry matter production, decomposition rate and macronutrient and silicon release from pigeonpea and pearl millet in monoculture and intercropping systems. A randomized block design was used with a 3 x 6 factorial arrangement, with four replications. The first factor consisted of three cover crops (pigeonpea, pearl millet and intercropping of these cover crops) and the second consisted of six sampling times [0, 18, 32, 46, 74 and 91 days after desiccation (DAD)]. Pearl millet produced greater amounts of shoot dry matter and content of N, P, K, Ca, Mg, S, C and Si and had a higher decomposition rate and macronutrient and Si release than the other cover crops. The rates of decomposition and daily nutrient release from shoot dry matter were highest in the first period of evaluation (0-18 DAD). Over time, the C/N, C/P and C/S ratios increased, while C/Si and the decomposition rate decreased. Potassium was the nutrient most quickly released to the soil, especially from pearl millet residue. Silicon had the lowest release rate, with 62, 82 and 74 % of the total content in the shoot dry matter remaining in the last evaluation of pearl millet, pigeonpea and in the intercrop system, respectively. The shoot dry matter from the intercrop system had a different decomposition rate than that from the pearl millet monoculture and pigeonpea. Plants with greater shoot dry matter production and lower C/Si ratio are more effective in a no-tillage system for providing a more complete and persistent soil cover.


Sign in / Sign up

Export Citation Format

Share Document