scholarly journals AGRONOMIC TRAITS EVALUATION IN IRRIGATED SORGHUM IN THE BRAZILIAN SEMI-ARID

2020 ◽  
Vol 19 ◽  
pp. 14
Author(s):  
AMADEU REGITANO NETO ◽  
RAFAEL DANTAS DOS SANTOS

Green and dry matter production, along with grain yield and otheragronomic traits, were assessed in 44 sorghum genotypes. Two sets of genotypes were formed based on known plant height, aiming to evaluate green and dry matter production and grain yield, as well as to separate forage and grain sorghum genotypes. The evaluations were performed based on experiments with three replications, being one irrigated (drip system) in Petrolina, State of Pernambuco, and the other rainfed, in Nossa Senhora da Glória, state of Sergipe, Brazil. Sowing dates were July 30, 2016, in Nossa Senhora da Glória; July 13, 2017, and October 24, 2018, in Petrolina; with 117 and 128 days from sowing to harvest, respectively. Expressive forage production was observed in genotypes EP-17 and SF-11, which exceeded 120 t ha-1. BRS 506 produced 108 t ha-1, while 13F03(1141572), P-294, P-288, 2502 x 467, BRS Ponta Negra, and SF-15 presented green matter production ranging from 94 to 98.5 t ha-1. Dry matter production was highly correlated with green matter production, and SF-11 had the best performance of 45.5 t ha-1. The observed plant height was more expressive for forage sorghum genotypes, being this trait highly correlated with the green and dry matter. The best grain yield performance reached 13.4 and 10.3 t ha-1, values observed for 9910032 and BRS Ponta Negra, respectively. The results demonstrate the full adaptability of sorghum to the semi-arid environment and the feasibility to produce roughage and grains under irrigation in the Brazilian semi-arid region.

1998 ◽  
Vol 49 (2) ◽  
pp. 179 ◽  
Author(s):  
A. K. Borrell ◽  
A. L. Garside ◽  
S. Fukai ◽  
D. J. Reid

Production of flooded direct-seeded rice (Oryza sativa L.) in semi-arid tropical regions of northern Australia would be enhanced by increasing the efficiency of fertiliser nitrogen (N) use. Short-statured and early-maturing genotypes have replaced the taller and later genotypes in northern Australia, and they may respond differently to N. This paper reports the results of 4 experiments comparing the response of 3 rice genotypes differing in maturity and stature to 5 rates of applied nitrogen (0, 70, 140, 210, and 280 kg/ha) over 4 seasons (2 wet and 2 dry seasons) in the Burdekin River Irrigation Area, northern Australia. Grain yield varied among seasons and was negatively correlated with average daily mean temperature during the 30-day period before anthesis. The response of yield to N fertilisation was generally higher in the dry season. Panicle number was correlated with grain yield in both seasons, yet responded to N fertilisation only in the dry season. In 3 of 4 experiments, grain yield responded to the application of up to 70 kg N/ha, yielding about 750 g/m2. In only 1 dry season experiment did grain yield respond to the application of 140 kg N/ha, yielding about 930 g/m2. In this experiment, the response of grain yield to N rate also varied among genotypes such that yield in the early-maturing genotypes (Newbonnet and Lemont) was more responsive to N rates above 70 kg/ha than in the late-maturing genotype (Starbonnet). Of the 3 genotypes examined, highest yields were attained in Newbonnet (early-maturing, medium-statured) by combining high total dry matter production with high harvest index, indicating that this plant type may have an advantage in northern Australia. Yields in Lemont (early-maturing, short-statured) and Starbonnet (late-maturing, tall-statured) were limited by dry matter production and harvest index, respectively. There is some evidence that increased dry matter production in Newbonnet compared with Lemont was related to increased stem length. The evidence linking high harvest index with increased earliness in Newbonnet compared with Starbonnet is less compelling.


2019 ◽  
Vol 17 (1) ◽  
pp. 33-38
Author(s):  
Swapan Kumar Paul ◽  
Mosa Morsheda Khatun ◽  
Md Abdur Rahman Sarkar

Sulphur is a component of plant amino acids, proteins, vitamins, and enzyme structures which influence the productivity of oil seed and total oil content. The experiment was conducted to find out the effect of sulphur on the seed yield and oil content of sesame in Bangladesh. The experiment comprised three varieties of sesame viz. Binatil-2, Binatil-3 and BARI Til-4 and six levels of sulphur (S) viz. 0, 10, 20, 30, 40 and 50 kg S ha–1. The experiment was laid out in a randomized complete block design with three replications. Dry matter production, crop characters, yield components, seed yield and oil content were significantly influenced by variety, level of sulphur and their interaction. The highest dry matter production plant–1 at 50 DAS (17.56 g), plant height (101.3 cm), number of branches plant–1 (3.66),  number of pods plant-1 (41.56), number of seeds pod-1 (58.83),  seed yield    (747.2 kg ha-1), stover yield (2243.0 kg ha–1) and oil content (40.03%) were obtained in BARI Til-4 while the corresponding lowest values of all parameters were recorded in Binatil-2. In case of sulphur application, the highest dry matter production plant–1 at 50 DAS (20.81 g), plant height (109.7 cm), number of branches plant–1 (3.87),  number of pods plant–1 (46.13),  number of seeds pod-1 (56.67),  seed yield (800.0 kg ha–1), stover yield (2787 kg ha–1 ) and oil content (43.97%) were obtained when crop was fertilized with 30 kg S ha–1 while the lowest seed yield (502.2 kg ha–1), stover yield (1550.0 kg ha–1) and oil content (32.80%) were obtained in control (0 kg S ha–1). BARI Til-4 fertilized with 30 kg S ha–1 produced the highest dry matter plant–1 at 50 DAS (24.80 g), number of pods plant–1 (51.13), seeds pod–1 (62.0) and seed yield (1011.0 kg ha–1). The highest oil content (43.97%) was also recorded in BARI Til-4 fertilized with 30 kg S ha–1, which was as good as that of BARI Til-4 fertilized with 40 kg S ha–1. Therefore, BARI Til-4 fertilized with 30 kg S ha–1 can be considered as a promising practice in respect of seed yield and oil content of sesame in Bangladesh. J. Bangladesh Agril. Univ. 17(1): 33–38, March 2019


2018 ◽  
Vol 39 (1) ◽  
pp. 275
Author(s):  
Ana Paula da Silva Carvalho ◽  
Roney Mendes de Arruda ◽  
Joadil Gonçalves de Abreu ◽  
Alexandre Lima de Souza ◽  
Rosane Cláudia Rodrigues ◽  
...  

This study aimed to evaluate how different irrigation water depths influence the agronomical features of elephant grass (Pennisetum purpureum Schum) cv. Roxo. Grass was cultivated in a pasture belonging to the Bovine Sector of the National Agrotechnical School of Caceres – MT. The experiment was a block design with five treatments and four repetitions. Treatments consisted of five water depths: 0 = 0% of available water (AW), 1 = 21% of AW, 2 = 34% of AW, 3 = 74% of AW, and 5 = 100% of AW. Evaluated features were production (dry matter ha-1), plant height, leaf/steam ratio, and stem diameter. Dry matter production of cuts from May and July increased linearly with increasing water depth (P < 0.05). Plant height increased linearly as water depth increased in the cuts of May and September, while the height of July cuts was 71.76 cm under an irrigation depth of 390.77 mm. In May, July, and September cuts, leaf percentage decreased linearly as water depth increased (P < 0.05). An increase of 1 mm in water depth reduced leaf percentage by 0.0936% (May), 0.0295% (July), and 0.0122% (September). Our results indicate that to improve dry matter production, May, July, and September cuts should be irrigated with water depths of 56.03 mm, 601.78 mm, and 577.65 mm, respectively.


1982 ◽  
Vol 22 (115) ◽  
pp. 76 ◽  
Author(s):  
KA Boundy ◽  
TG Reeves ◽  
HD Brooke

The effect of serial planting on dry matter production, leaf area, grain yield and yield components cf Lupinus angustifoiius (cvv. Uniwhite, Uniharvest and Unicrop) and L. albus (cv. Ultra) was investigated in field plots at Rutherglen in 1973 and 1974. Delayed planting reduced dry matter production of all cultivars, and leaf area for Ultra. Differences in dry matter partitioning were observed between the late flowering Uniharvest, and the early flowering Unicrop and Ultra. In Uniharvest, delayed plantings resulted in a greater proportion of total dry matter being produced during the flowering phase, whereas the reverse was true for Unicrop and Ultra. The later flowering cultivars showed marked grain yield and yield component reduction with later sowing. Yields were reduced by 160.6 kg/ha and 222.5 kg/ha for each week's delay in sowing Uniharvest and Uniwhite, respectively. This effect was offset in the early flowering cultivars by greater development of lateral branches. In addition, when Unicrop and Ultra were planted in April, pod and flower abortion on the main stem resulted from low temperatures at flowering time. Optimum sowing time was early April for Uniwhite and Uniharvest, and early May for Unicrop and Ultra. Excellent vegetative growth under ideal moisture conditions highlighted the poor harvest indices of lupins and the scope for genetic improvement in the genus.


1990 ◽  
Vol 41 (3) ◽  
pp. 449 ◽  
Author(s):  
GK McDonald

The growth and yield of two lines of uniculm barley, WID-103 and WID-105, were compared over a range of sowing rates (50-400 kg/ha) with the commercial varieties Galleon and Schooner. The experiments were conducted at Strathalbyn, S.A., in 1986, 1987 and 1988 and at the Waite Agricultural Research Institute in 1987. A third tillered variety, Clipper, was included in the comparison in 1988. Over the three years plant populations measured early in the season ranged from 39/m2 to 709/m2, and grain yields from 97 to 41 1 g/m2. Dry matter production at ear emergence increased with greater plant density, and both the tillered varieties and the uniculm lines showed similar responses to higher sowing rates. At maturity, dry matter production of the tillered barleys was greater than or equal to that of the uniculms and the harvest indices (HIs) of the two types were similar. Consequently, grain yields of the tillered types were greater than or equal to the yields of the uniculms. Over the four experiments the tillered varieties had a 6% higher yield. The number of ears/m2 was the yield component most affected by plant density in both the tillered and uniculm barleys. The uniculm lines had more spikelets/ear, but tended to set fewer grains/spikelet and produce smaller kernels. The experiments failed to demonstrate any advantage of the uniculm habit to the grain yield of barley. These results differ from previous experiments that showed that a uniculm line, WID-101, had a higher yield than the tillered variety Clipper. It is suggested that the uniculm habit per se was not the cause of this higher yield, but its higher HI resulted in it outyielding Clipper. Current varieties, however, have HIs similar to the uniculm lines and yield equally to or more than the uniculm barleys examined. To further improve the grain yield of uniculm barley, greater dry matter production is necessary as the HIs of these lines are already high.


2017 ◽  
Vol 4 (3) ◽  
pp. 157-164
Author(s):  
Mohammad Issak ◽  
Most Moslama Khatun ◽  
Amena Sultana

The experiment was conducted to study the effect of salicylic acid (SA) as foliar spray on yield and yield contributing characters of BRRI Hybrid dhan3.The experiment was laid out in a randomized complete block design (RCBD) with three replications and six treatment combinations as, T1: 0 μM SA, T2: 200 μM SA, T3: 400 μM SA, T4: 600 μM SA, T5: 800 μM SA and T6: 1000 μM SA. The results revealed that biomass production, dry matter production and yield and yield contributing characters were significantly increased due to the foliar application of SA. At the maximum tillering (MT) stage, the highest biomass production (15.0 t/ha) and dry matter production was observed in T3 treatment. Treatments T4, T5 and T6 showed significant variation on the effective tillers/hill. The maximum effective tillers/hill were found in the treatment T6. The percentages of spikelet sterility were decreased with increasing the level of SA and the percentage of filled grains/panicle were increased with increasing level of SA. The insect infestation was reduced with increasing level of SA to up to 1000 μM. The maximum grain yield (9.21 t/ha) and straw yield (9.22 t/ha) was found in the treatment T6 which was identical to T5. On the other hand, in all cases the lowest results were found in the control treatment. The result showed that grain yield of rice increased with increasing level of SA to up to 1000 μM (T6 treatment). Our results suggest that foliar spray of SA might be applied to increase the yield of hybrid rice in Bangladesh.Res. Agric., Livest. Fish.4(3): 157-164, December 2017


1974 ◽  
Vol 10 (2) ◽  
pp. 87-95 ◽  
Author(s):  
B. A. C. Enyi

SUMMARYApplication of dimecron to cowpea plants increased grain yield, its effect being more pronounced in widely spaced plants and those planted in March. Dimecron increased grain yield by encouraging greater leaf area development, by increasing the number of flowering inflorescences and the number of pods set per inflorescence, and by decreasing the number of shrivelled pods. March planting encouraged greater dry matter production than January and May planting. Dimecron application decreased the number of Ootheca beningseni, reduced the proportion of leaf damaged by these insects, and reduced the number of plants infested with aphids and Acidodis larvae.


2006 ◽  
Vol 46 (1) ◽  
pp. 93 ◽  
Author(s):  
G. K. McDonald

High spatial and temporal variability is an inherent feature of dryland cereal crops over much of the southern cereal zone. The potential limitations to crop growth and yield of the chemical properties of the subsoils in the region have been long recognised, but there is still an incomplete understanding of the relative importance of different traits and how they interact to affect grain yield. Measurements were taken in a paddock at the Minnipa Agriculture Centre, Upper Eyre Peninsula, South Australia, to describe the effects of properties in the topsoil and subsoil on plant dry matter production, grain yield and plant nutrient concentrations in two consecutive years. Wheat (Triticum aestivum L. cv. Worrakatta) was grown in the first year and barley (Hordeum vulgare L. cv. Barque) in the second. All soil properties except pH showed a high degree of spatial variability. Variability in plant nutrient concentration, plant growth and grain yield was also high, but less than that of most of the soil properties. Variation in grain yield was more closely related to variation in dry matter at maturity and in harvest index than to dry matter production at tillering and anthesis. Soil properties had a stronger relationship with dry matter production and grain yield in 1999, the drier of the two years. Colwell phosphorus concentration in the topsoil (0–0.15 m) was positively correlated with dry matter production at tillering but was not related to dry matter production at anthesis or with grain yield. Subsoil pH, extractable boron concentration and electrical conductivity (EC) were closely related. The importance of EC and soil extractable boron to grain yield variation increased with depth, but EC had a greater influence than the other soil properties. In a year with above-average rainfall, very little of the variation in yield could be described by any of the measured soil variables. The results suggest that variation in EC was more important to describing variation in yield than variation in pH, extractable boron or other chemical properties.


Sign in / Sign up

Export Citation Format

Share Document