Postnatal development of the rostral solitary nucleus in rat: Dendritic morphology and mitochondrial enzyme activity

1989 ◽  
Vol 22 (2) ◽  
pp. 313-321 ◽  
Author(s):  
Phillip S. Lasiter ◽  
Donna M. Wong ◽  
Diane L. Kachele
Fitoterapia ◽  
2002 ◽  
Vol 73 (5) ◽  
pp. 381-385 ◽  
Author(s):  
T. Sumathy ◽  
S. Govindasamy ◽  
K. Balakrishna ◽  
G. Veluchamy

1998 ◽  
Vol 201 (24) ◽  
pp. 3377-3384 ◽  
Author(s):  
S. C. Leary ◽  
B. J. Battersby ◽  
C. D. Moyes

We examined whether the relationships between mitochondrial enzyme activity, mitochondrial DNA (mtDNA) and mitochondrial RNA (mtRNA) were conserved in rainbow trout (Oncorhynchus mykiss) tissues that differ widely in their metabolic and molecular organization. The activity of citrate synthase (CS), expressed either per gram of tissue or per milligram of total DNA, indicated that these tissues (blood, brain, kidney, liver,cardiac, red and white muscles) varied more than 100-fold in mitochondrial content. Several-fold differences in the levels of CS mRNA per milligram of DNA and CS activity per CS mRNA were also observed, suggesting that fundamental differences exist in the regulation of CS levels across tissues. Although tissues varied 14-fold in RNA g-1, poly(A+) RNA (mRNA)was approximately 2 % of total RNA in all tissues. DNA g-1 also varied 14-fold across tissues, but RNA:DNA ratios varied only 2.5-fold. The relationship between two mitochondrial mRNA species (COX I, ATPase VI) and one mitochondrial rRNA (16S) species was constant across tissues. The ratio of mtRNA to mtDNA was also preserved across most tissues; red and white muscle had 10- to 20-fold lower levels of mtDNA g-1 but 7- to 10-fold higher mtRNA:mtDNA ratios, respectively. Collectively, these data suggest that the relationship between mitochondrial parameters is highly conserved across most tissues, but that skeletal muscles differ in a number of important aspects of respiratory gene expression ('respiratory genes'include genes located on mtDNA and genes located in the nucleus that encode mitochondrial protein) and mtDNA transcriptional regulation.


Stroke ◽  
2020 ◽  
Vol 51 (Suppl_1) ◽  
Author(s):  
Sharnikha Saravanan ◽  
Weizhao Zhao ◽  
Kunjan R Dave ◽  
Miguel A Perez-Pinzon ◽  
Ami P Raval

Background: A woman’s risk of a stroke increases exponentially following the onset of menopause, andpost-stroke cognitive decline is a significant consequence of stroke survivors. Our earlier study demonstrated that physical exercise (PE) reduced post-stroke brain injury and improved cognitive functions in male rats. The focus of our study is on the improvement of post-stroke cognitive function in female rats. Methods: Reproductively senescent Sprague-Dawley female rats were exposed to transient middle cerebral artery occlusion (tMCAO; 90 min) and randomly assigned to either PE or sham-PE groups. After 3-5 days, rats underwent sham-PE (0m/min speed) or PE (15m/min speed) for 30 mins either every day (continuous) or alternate day for five times on treadmill. The rats that underwent the alternate day paradigm were treated with ER-β agonist (DPN; 1mg/kg) or vehicle-DMSO immediately following PE/sham-PE sessions to determine the synergistic effect. Twenty-one days after the last PE/sham-PE, rats were tested for hippocampal-dependent contextual fear conditioning and freeze time was measured. Rat brains were processed for histology and infarct area was measured with MCID software. From a separate cohort of rat subjected to PE or sham-PE, brain tissue was harvested for various biochemical assays and mitochondrial enzyme activity measurements. Results: Post-tMCAO continuous PE did not reduce ischemic damage. However, alternate PE regimen with or without ER-β agonist reduced infract volume by 20% (p < 0.05) and 23% (p < 0.05), respectively as compared to no-PE. Similarly, alternate PE showed increased freezing on the second day of fear conditioning by 15% (p < 0.05), indicating improved spatial memory. Individual mitochondrial complex I, II, III and IV enzyme activity measurements demonstrated significant improvement in complex III-IV enzyme activities in the alternate PE treated group as compared to sham-PE. Conclusion: An alternate day PE paradigm and ER-β activation improves post-stroke mitochondrial enzyme activities and cognition in reproductively senescent female rats. Future studies delineating underlying mechanism could help identify therapies to prevent/reduce cognitive decline in menopausal female stroke patients.


1969 ◽  
Vol 113 (4) ◽  
pp. 681-685 ◽  
Author(s):  
Theodore E. Gram ◽  
Anthony M. Guarino ◽  
David H. Schroeder ◽  
James R. Gillette

1. Changes in certain kinetic properties (Vmax. and apparent Km) of hepatic microsomal mixed-function oxidases have been studied as a function of postnatal development and maturation in male rats. 2. Microsomal cytochrome P-450 content changed only slightly between 1 and 12 weeks of age. 3. Aniline hydroxylase activity (Vmax.) increased abruptly between 1 and 2 weeks of age to greater than adult activities and then returned to a plateau value between 4½ and 12 weeks of age. Ethylmorphine demethylase activity remained low and relatively constant between 1 and 3 weeks of age and then increased markedly (∼100%) between 3 and 4½ weeks. 4. The apparent Michaelis constant (Km) for aniline hydroxylation increased almost linearly with time between 1 and 6 weeks of age and tended to reach a plateau value thereafter. The apparent Km for ethylmorphine demethylation increased between 1 and 3 weeks of age and then decreased abruptly to a constant value between 6 and 12 weeks. 5. The data indicate that developmental changes in the activity of these microsomal oxidases do not correlate temporally with each other or with changes in microsomal cytochrome P-450 content. 6. The most dramatic changes in enzyme activity were associated with early development (1–3 weeks) and weaning (3–4 weeks). 7. Changes in weight of seminal vesicle, a criterion of sexual maturation in male rats, were most prominent between 6 and 8 weeks of age and thus appeared to be separated in time from the prominent changes in enzyme activity.


Sign in / Sign up

Export Citation Format

Share Document