Abstract WP153: Post-Stroke Physical Exercise Improves Cognition in Middle-Aged Female Rats

Stroke ◽  
2020 ◽  
Vol 51 (Suppl_1) ◽  
Author(s):  
Sharnikha Saravanan ◽  
Weizhao Zhao ◽  
Kunjan R Dave ◽  
Miguel A Perez-Pinzon ◽  
Ami P Raval

Background: A woman’s risk of a stroke increases exponentially following the onset of menopause, andpost-stroke cognitive decline is a significant consequence of stroke survivors. Our earlier study demonstrated that physical exercise (PE) reduced post-stroke brain injury and improved cognitive functions in male rats. The focus of our study is on the improvement of post-stroke cognitive function in female rats. Methods: Reproductively senescent Sprague-Dawley female rats were exposed to transient middle cerebral artery occlusion (tMCAO; 90 min) and randomly assigned to either PE or sham-PE groups. After 3-5 days, rats underwent sham-PE (0m/min speed) or PE (15m/min speed) for 30 mins either every day (continuous) or alternate day for five times on treadmill. The rats that underwent the alternate day paradigm were treated with ER-β agonist (DPN; 1mg/kg) or vehicle-DMSO immediately following PE/sham-PE sessions to determine the synergistic effect. Twenty-one days after the last PE/sham-PE, rats were tested for hippocampal-dependent contextual fear conditioning and freeze time was measured. Rat brains were processed for histology and infarct area was measured with MCID software. From a separate cohort of rat subjected to PE or sham-PE, brain tissue was harvested for various biochemical assays and mitochondrial enzyme activity measurements. Results: Post-tMCAO continuous PE did not reduce ischemic damage. However, alternate PE regimen with or without ER-β agonist reduced infract volume by 20% (p < 0.05) and 23% (p < 0.05), respectively as compared to no-PE. Similarly, alternate PE showed increased freezing on the second day of fear conditioning by 15% (p < 0.05), indicating improved spatial memory. Individual mitochondrial complex I, II, III and IV enzyme activity measurements demonstrated significant improvement in complex III-IV enzyme activities in the alternate PE treated group as compared to sham-PE. Conclusion: An alternate day PE paradigm and ER-β activation improves post-stroke mitochondrial enzyme activities and cognition in reproductively senescent female rats. Future studies delineating underlying mechanism could help identify therapies to prevent/reduce cognitive decline in menopausal female stroke patients.

1966 ◽  
Vol 52 (3) ◽  
pp. 368-374 ◽  
Author(s):  
R. S. Leeuwin

ABSTRACT The effect of the thyroid gland on the pseudocholinesterase activity has been investigated. Whereas in female rats the pseudocholinesterase activity is not affected by thyroidectomy, the activity in the liver and serum of male rats is significantly increased after thyroidectomy. In castrated and thyroidectomized male rats, the pseudocholinesterase activity markedly exceeds that of either the castration or the thyroidectomy level; the effects are additive and independent In female rats, thyroidectomy causes an increase of pseudocholinesterase activity in spayed animals. Administration of thyroxine is followed by a decrease in the pseudocholinesterase activity of castrated-thyroidectomized males. It is concluded that the thyroid gland as well as the gonads control the pseudocholinesterase activity: in male rats the relatively low pseudocholinesterase activity is maintained by the combined actions of the gonads and the thyroid gland, whereas in female rats, the thyroid gland does not affect the relatively high enzyme activity induced by the ovarian oestrogens.


1976 ◽  
Vol 68 (2) ◽  
pp. 265-272 ◽  
Author(s):  
ÅKE STENBERG

SUMMARY The metabolism of [4-14C]4-androstene-3,17-dione was studied in the 105000 g microsomal and supernatant fractions of liver from developing rats of both sexes. The following enzyme activities were measured: 5β-reductase (supernatant fraction) and 5α-reductase, 17α- and 17β-hydroxysteroid reductases, 6β-, 7α- and 16α-hydroxylases (microsomal fraction). The activities of the 3α- and 3β-hydroxysteroid reductases were estimated by calculating the ratios of 3α-:5α- and 3β-: 5α-reduced metabolites formed, respectively. Most enzyme activities present at birth (i.e. 5β-reductase, 5α-reductase, 17β-hydroxysteroid reductase, 6β- and 7α-hydroxylase) increased until 20 days of age in both male and female rats. Between 20 and 30 days of age a number of masculine metabolic characteristics appeared in both sexes, i.e. the 16α-hydroxylase and the 17α-hydroxysteroid reductase were induced, the 5β-reductase activity rapidly increased and the 5α-reductase activity slightly decreased. During a third period beginning 30 days after birth the adult male enzyme activity pattern was completed by the induction of 3β-hydroxysteroid reductase and a further increase in the activity of 16α-hydroxylase. After 30 days of age a feminine type of liver metabolism also rapidly developed in female rats; the 16α-hydroxylase and the 17α-hydroxysteroid reductase activities disappeared, the 6β-hydroxylase and the 5β-reductase activities decreased and the 5α-reductase activity increased six times. The developmental patterns of enzyme activities in the rat liver are consistent with a first developmental phase (0–30 days of age) independent of hypophysial control and probably determined primarily by the genome of the liver cell and a second phase (from 30 days onwards) with increasing sexual differentiation under hypophysial control. This control is mediated by some kind of feminizing factor in female rats and possibly by some kind of androgen-elicited secretion of masculinizing factor(s) in male rats. The metabolism of [4-14C]4-androstene-3,17-dione was also studied during different times of the day and during different phases of the oestrous cycle. The 16α-hydroxylase activity showed a diurnal variation with higher values at noon than at midnight. The 5β-reductase activity reached a maximal activity during metoestrus.


1977 ◽  
Vol 162 (3) ◽  
pp. 545-556 ◽  
Author(s):  
G S Rao ◽  
G Haueter ◽  
M L Rao ◽  
H Breuer

1. Microsomal preparations from rat liver, kidney and intestine were tested for UDP-glucuronyltransferase activity by using oestrone, oestradiol-17 beta, oestriol, testosterone, cortisol, cortisone, corticosterone, aldosterone, tetrahydrocortisol and tetrahydrocortisone as substrates. The microsomal preparation from the liver glucuronidated oestrone, oestradiol-17 beta and testosterone. 2. The specific activity of the enzyme was significantly higher in livers from female rats than in those from male rats. 3. Testosterone was actively glucuronidated by both sexes. Cortisol, cortisone, corticosterone, aldosterone, tetrahydrocortisol and tetrahydrocortisone were not glucuronidated by any of the three tissues. 4. The non-ionic detergent Lubrol WX activates liver microsomal UDP-glucuronyltransferase 2-3-fold with oestrone and testosterone as substrates. 5. Oestrone glucuronyltransferase was inhibited by oestradiol-17 beta, predominantly competitively and by testosterone non-competitively. Bilirubin was a non-competitive inhibitor of oestrone glucuronidation. p-Nitrophenol had no effect. 6. Oestrone glucuronyltransferase could not be stimulated by either acute or prolonged treatment of animals with phenobarbital, whereas a single dose of 3-methylcholanthrene led to a moderate stimulation. 7. Ovariectomy leads to a 56% decrease in oestrone glucuronyltransferase activity; administration of oestradiol-17 beta induces the enzyme to normal activity after 12 days, and after 15 days the activity is twice the control value. Actinomycin D and cycloheximide block the oestradiol-17 beta-induced increase in enzyme activity. 8. Castration has no effect on the activity of testosterone glucuronyltransferase, nor does administration of testosterone influence enzyme activity. The results provide strong evidence for the existence of multiple steroid glucuronyltransferases in the liver of the rat.


2014 ◽  
Vol 33 (4) ◽  
pp. 307-318 ◽  
Author(s):  
Karen Larsen ◽  
Roberto Najle ◽  
Adrián Lifschitz ◽  
María L. Maté ◽  
Carlos Lanusse ◽  
...  

The activities of different xenobiotic-metabolizing enzymes in liver subcellular fractions from Wistar rats exposed to a glyphosate (GLP)-based herbicide (Roundup full II) were evaluated in this work. Exposure to the herbicide triggered protective mechanisms against oxidative stress (increased glutathione peroxidase activity and total glutathione levels). Liver microsomes from both male and female rats exposed to the herbicide had lower (45%-54%, P < 0.01) hepatic cytochrome P450 (CYP) levels compared to their respective control animals. In female rats, the hepatic 7-ethoxycoumarin O-deethylase (a general CYP-dependent enzyme activity) was 57% higher ( P < 0.05) in herbicide-exposed compared to control animals. Conversely, this enzyme activity was 58% lower ( P < 0.05) in male rats receiving the herbicide. Lower ( P < 0.05) 7-ethoxyresorufin O-deethlyase (EROD, CYP1A1/2 dependent) and oleandomycin triacetate (TAO) N-demethylase (CYP3A dependent) enzyme activities were observed in liver microsomes from exposed male rats. Conversely, in females receiving the herbicide, EROD increased (123%-168%, P < 0.05), whereas TAO N-demethylase did not change. A higher (158%-179%, P < 0.01) benzyloxyresorufin O-debenzylase (a CYP2B-dependent enzyme activity) activity was only observed in herbicide-exposed female rats. In herbicide-exposed rats, the hepatic S-oxidation of methimazole (flavin monooxygenase dependent) was 49% to 62% lower ( P < 0.001), whereas the carbonyl reduction of menadione (a cytosolic carbonyl reductase-dependent activity) was higher ( P < 0.05). Exposure to the herbicide had no effects on enzymatic activities dependent on carboxylesterases, glutathione transferases, and uridinediphospho-glucuronosyltransferases. This research demonstrated certain biochemical modifications after exposure to a GLP-based herbicide. Such modifications may affect the metabolic fate of different endobiotic and xenobiotic substances. The pharmacotoxicological significance of these findings remains to be clarified.


1985 ◽  
Vol 106 (1) ◽  
pp. 71-79 ◽  
Author(s):  
R. C. K. Pak ◽  
K. W. K. Tsim ◽  
C. H. K. Cheng

ABSTRACT Hepatic microsomal testosterone 5-reductase activity was approximately fourfold higher in adult female rats than in males. This discrepancy was only partly androgen-dependent since gonadectomy of male rats at 68 days of age resulted in only a partial increase of the enzyme activity. This increase was reversible by the administration of testosterone. Similar treatment, however, produced no effect in the female rat, indicating that there is a sex difference in testosterone responsivity. Castration of newborn male rats resulted in a marked increase in the basal enzyme activity. This increase was not affected by treating the adults with testosterone. Giving testosterone to male rats immediately after neonatal gonadectomy, or to newborn female rats, did not produce the male pattern of both the basal enzyme activity and the testosterone responsivity in adulthood. These results suggest that a brief exposure to neonatal androgen is not critical for the expression of the male type of enzyme activity, but that the continuous presence of the male gonads up to and including the pubertal period is essential. Exposure of pubescent female rats to testosterone during the period from 35 to 50 days of age resulted in a significant increase in testosterone sensitivity when tested at 90 days of age, suggesting that pubertal exposure to androgen is important for the expression of testosterone responsivity in adulthood. The sensitivity was potentiated when the animals were ovariectomized before puberty. Furthermore, the enzyme activity in prepubertally ovariectomized female rats was significantly lower than that in adult gonadectomized animals. The decreased level of activity returned to the control value when oestrogen was replaced during puberty, indicating that peripubertal oestrogen exposure is required for maintaining the high level of activity found in adult female rats. The present findings suggest that the pubertal period represents a sensitive phase during which sex hormones act to regulate the sexual differentiation of testosterone 5-reductase activity in the rat. J. Endocr. (1985) 106, 71–79


1991 ◽  
Vol 6 (2) ◽  
pp. 163-170 ◽  
Author(s):  
E. D. Lephart ◽  
E. R. Simpson ◽  
W. H. Trzeciak

ABSTRACT To investigate the effects of sex hormones on 5α-reductase, we examined 5α-reductase mRNA content and enzyme activity in the adrenal cortex of peripubertal male and female rats. In male rats, the influence of castration or hormone-replacement treatment with dihydrotestosterone (5α-DHT) on 5α-reductase was assessed. To stimulate ovarian sex hormone production in immature female rats, the effect of a single injection of 5 IU pregnant mare serum gonadotrophin (PMSG) on 5α-reductase was examined. The efficacy of the treatments was demonstrated by measuring serum LH and ventral prostate weight in male rats, and serum oestradiol and ovarian weight in female rats. Growth hormone was also measured across all treatments in male and female rats. Adrenal 5α-reductase mRNA levels were determined by RNA blot analysis utilizing a rat 5α-reductase cDNA as probe. 5α-Reductase enzyme activity was estimated by isolating [ 3H]5α-DHT by thin-layer chromatography after incubation with [3H]testosterone. The identity of the [3H]5α-DHT formed was demonstrated by recrystallization of the derivatized DHT to constant specific activity. In controls, adrenal cortical 5α-reductase mRNA content was nearly four times higher in immature female rats compared with intact peripubertal males. Castration resulted in a sevenfold increase in adrenal 5α-reductase mRNA content compared with that in intact controls, while in DHT-injected castrated animals the mRNA level was nearly undetectable. The content of adrenal 5α-reductase mRNA in anoestrous rats was nearly four times higher than in PMSG-treated animals. Adrenal 5α-reductase activity was higher in immature female rats than in intact peripubertal males. Castrated rats displayed more than a threefold increase in 5α-reductase activity over that of controls, whereas the activity values were below controls in castrated animals treated with DHT. In immature female rats treated with PMSG, 5α-reductase activity decreased by 40% to that of anoestrous controls. These results indicate that in the rat adrenal cortex the content of mRNA encoding 5α-reductase is negatively regulated by sex hormones presumably at the transcriptional level. Suppression of the enzymatic activity of adrenal 5α-reductase by sex hormones is due to lower mRNA levels encoding this protein.


Stroke ◽  
2020 ◽  
Vol 51 (Suppl_1) ◽  
Author(s):  
Chunyang Wang ◽  
Michael Chopp ◽  
Rui Huang ◽  
Yi Zhang ◽  
William Golembieski ◽  
...  

Introduction: Despite the recent advances in the acute stroke care, treatment options for long-term disability are limited. RPh201 is a botany-derived bioactive compound that has been shown to exert beneficial effects in various experimental models of neural injury. However, the effect of RPh201 on stroke recovery has not been investigated. The present study evaluated the effect of RPh201 on functional recovery after stroke. Methods: Young adult Wistar rats subjected to embolic middle cerebral artery occlusion (MCAO) were randomized into the following experimental groups stratified by sex (n=20/group): 1) RPh201 treatment, and 2) vehicle (cottonseed oil). RPh201 (20 μl) or vehicle were subcutaneously administered twice a week for 16 consecutive weeks starting at 21 days after MCAO. An array of behavioral tests were performed during 120 days after treatment initiation. Results: Male, but not female, ischemic rats treated with RPh201 exhibited significant (p<0.05) improvement of neurological function measured by adhesive removal test, foot-fault test, and modified neurological severity score at 90 and 120 days after initiation of treatment. Immunohistochemistry analysis showed that RPh201 treatment robustly increased neurofilament heavy chain positive axons and myelin basic protein densities in the peri-infarct area by 61% and 31% in the male rats, respectively, when compared to the vehicle treatment, which were further confirmed by Western blot analysis. The RPh201 treatment did not reduce infarct volume in both male and female rats. Conclusions: Our data demonstrated that RPh201 has a therapeutic effect on improvement of functional recovery in male ischemic rats even when the treatment was initiated 21 days post stroke. Enhanced axonal and myelination densities by RPh201 in ischemic brain may contribute to improved stroke recovery.


1973 ◽  
Vol 74 (1) ◽  
pp. 41-48 ◽  
Author(s):  
E. C. Griffiths ◽  
K. C. Hooper

ABSTRACT The activity of peptidases in the rat hypothalamus which are capable of inactivating oxytocin has previously been found to vary with stimuli known to influence gonadotrophin release and may be related to both luteinizing hormone (LH) and luteinizing hormone releasing factor (LH-RF) release (Griffith & Hooper 1972a,b). In the present study, enzyme activity was determined in normal female rats during the morning and afternoon of each stage of the oestrous cycle, in normal rats, and in female rats injected neonatally with testosterone. The activity of the supernatant fraction was found to be not significantly different during the morning of each stage, but was greatly decreased on the afternoon of pro-oestrus; particulate activity did not vary during the oestrous cycle. Supernatant and particulate activities were found to be the same in normal male rats and testosterone-treated females, as previously shown. Both fractions' activities were significantly less than those found in the oestrous cycle, other than on the afternoon of pro-oestrus. These results indicate changes in hypothalamic peptidase activity during the oestrous cycle which may be inversely related to LH and LH-RF release; they also confirm the masculinizing effect of neonatal testosterone on the hypothalamus.


1967 ◽  
Vol 105 (2) ◽  
pp. 717-722 ◽  
Author(s):  
C B Taylor ◽  
E. Bailey ◽  
W Bartley

1. Changes in the activities of ATP citrate lyase, ‘malic’ enzyme, glucose 6-phosphate dehydrogenase, pyruvate kinase and fructose 1,6-diphosphatase, and in the ability to incorporate [1−14C]acetate into lipid have been measured in the livers of developing rats between late foetal life and maturity. 2. In male rats the activities of those systems directly or indirectly concerned in lipogenesis (acetate incorporation into lipid, ATP citrate lyase and glucose 6-phosphate dehydrogenase) fall after birth and are maintained at a low value until weaning. After weaning these activities rise to a maximum between 30 and 40 days and then decline, reaching adult values at about 60 days. ‘Malic’ enzyme activity follows a similar course, except that none could be detected in the foetal liver. Pyruvate kinase activity is lower in foetal than in adult livers and rises to slightly higher than the adult value in the post-weaning period. Fructose 1,6-diphosphatase activity rises from a very low foetal value to reach a maximum at about 10 days but falls rapidly after weaning to reach adult values at about 30 days. 3. Weaning rats on to a high-fat diet caused the low activities of acetate incorporation, ATP citrate lyase, glucose 6-phosphate dehydrogenase and pyruvate kinase, characteristic of the suckling period, to persist. ‘Malic’ enzyme and fructose 1,6-diphosphatase activities were not altered appreciably. 4. No differences could be detected in hepatic enzyme activities between males and females up to 35 days, but after this time female rats gave higher values for acetate incorporation, glucose 6-phosphate dehydrogenase activity and ‘malic’ enzyme activity. 5. The results are discussed in relation to changes in alimentation and hormonal influences.


1975 ◽  
Vol 64 (2) ◽  
pp. 267-275 ◽  
Author(s):  
JAN-ÅKE GUSTAFSSON ◽  
MAGNUS INGELMAN-SUNDBERG ◽  
ÅKE STENBERG ◽  
FRIEDMUND NEUMANN

SUMMARY The metabolism of [4-14C]4-androstene-3, 17-dione, [4-14C]5α-androstane-3α, 17β-diol and 1,2-3H]5α-androstane-3α, 17β-diol 3,17-disulphate was studied using the microsomal fraction and the metabolism of [4-14C]4-androstene-3, 17-dione was studied using the 105 000 g supernatant fraction of liver from male and female rats aged 5 months that had been treated with cyproterone acetate before (from day 13 of pregnancy) and after birth (until 3 weeks of age). Nearly all sex-dependent enzyme activities in the treated male rats were changed in a direction characteristic of female rats: 5α-reductase active on 4-androstene-3, 17-dione increased in activity whereas 3β- and 17α-hydroxysteroid reductases and 6β- and 16α-hydroxylases active on 4-androstene-3, 17-dione and 2α-, 2β- and 18-hydroxylases active on 5α-androstane-3α, 17β-diol decreased in activity. Enzyme activities not under gonadal control, i.e. 3α- and 17β-hydroxysteroid reductases active on 4-androstene-3, 17-dione and 7α-hydroxylase active on both 4-androstene-3, 17-dione and 5α-androstane-3α, 17β-diol, were not affected by cyproterone acetate. The liver enzyme activities in treated female rats were generally not affected although significant effects were noted in two cases; in one of these (17α-hydroxysteroid reductase) a testosterone-like effect was observed. The results obtained are probably best explained in the following way: treatment with the anti-androgen during the neonatal period results in less efficient imprinting of the hypothalamo-hypophysial system leading to less pronounced masculine setting of sex-dependent enzyme levels and also to a relative androgen unresponsiveness. It is suggested that the biochemical methods used in the present investigation may be used for more exact estimation of the degree of neonatal sexual differentiation of the hypothalamo-hypophysial system than biological and psychological methods previously available.


Sign in / Sign up

Export Citation Format

Share Document