Cyclic and age-related changes in norepinephrine concentrations in the medial preoptic area and arcuate nucleus

1995 ◽  
Vol 38 (6) ◽  
pp. 561-564 ◽  
Author(s):  
P.S. Mohankumar ◽  
S. Thyagarajan ◽  
S.K. Quadri
2017 ◽  
Vol 96 ◽  
pp. 4-12 ◽  
Author(s):  
Victoria L. Nutsch ◽  
Ryan G. Will ◽  
Daniel J. Tobiansky ◽  
Michael P. Reilly ◽  
Andrea C. Gore ◽  
...  

Endocrinology ◽  
2009 ◽  
Vol 150 (8) ◽  
pp. 3699-3708 ◽  
Author(s):  
Genevieve Neal-Perry ◽  
Diane Lebesgue ◽  
Matthew Lederman ◽  
Jun Shu ◽  
Gail D. Zeevalk ◽  
...  

Reproductive success depends on a robust and appropriately timed preovulatory LH surge. The LH surge, in turn, requires ovarian steroid modulation of GnRH neuron activation by the neuropeptide kisspeptin and glutamate and γ-aminobutyric acid (GABA) neurotransmission in the medial preoptic area (mPOA). Middle-aged females exhibit reduced excitation of GnRH neurons and attenuated LH surges under estrogen-positive feedback conditions, in part, due to increased GABA and decreased glutamate neurotransmission in the mPOA. This study tested the hypothesis that altered kisspeptin regulation by ovarian steroids plays a role in age-related LH surge dysfunction. We demonstrate that middle-aged rats exhibiting delayed and attenuated LH surges have reduced levels of Kiss1 mRNA in the anterior hypothalamus under estrogen-positive feedback conditions. Kisspeptin application directly into the mPOA rescues total LH release and the LH surge amplitude in middle-aged rats and increases glutamate and decreases GABA release to levels seen in the mPOA of young females. Moreover, the N-methyl-d-aspartate receptor antagonist MK801 blocks kisspeptin reinstatement of the LH surge. These observations suggest that age-related LH surge dysfunction results, in part, from reduced kisspeptin drive under estrogen-positive feedback conditions and that kisspeptin regulates GnRH/LH release, in part, through modulation of mPOA glutamate and GABA release.


2016 ◽  
Vol 165 ◽  
pp. 173-178 ◽  
Author(s):  
Marie Bedos ◽  
Wendy Portillo ◽  
Jean-Philippe Dubois ◽  
Gerardo Duarte ◽  
José A. Flores ◽  
...  

Reproduction ◽  
2003 ◽  
pp. 151-163 ◽  
Author(s):  
H Dobson ◽  
S Ghuman ◽  
S Prabhakar ◽  
R Smith

Intriguingly, similar neurotransmitters and nuclei within the hypothalamus control stress and reproduction. GnRH neurone recruitment and activity is regulated by a balance between stimulation, suppression and permissiveness controlled by noradrenaline, neuropeptide Y and serotonin from the brain stem, impact from glutamate in the medial preoptic area and neuropeptide Y in the arcuate nucleus, in opposition to the restraining influences of gamma-aminobenzoic acid within the medial preoptic area and opioids from the arcuate nucleus. Stress also activates neuropeptide Y perikarya in the arcuate nucleus and brain stem noradrenaline neurones. The latter project either indirectly, via the medial preoptic area, or directly to the paraventricular nucleus to release corticotrophin releasing hormone (CRH) and arginine vasopressin (AVP). Within the medial preoptic area, GnRH neurones synapse with CRH and AVP axons. Stimulation of CRH neurones in the paraventricular nucleus also activates gamma-aminobenzoic acid and opioid neurones in the medial preoptic area and reduces GnRH cell recruitment, thereby decreasing GnRH pulse frequency. Oestradiol enhances stress-induced noradrenaline suppression of LH pulse frequency but when applied in the paraventricular nucleus or brain stem, and not in the medial preoptic area or arcuate nucleus. The importance of CRH and AVP in the medial preoptic area needs confirming in a species other than the rat, which uses adrenal activation to time the onset of the GnRH surge. Another stress-activated pathway involves the amygdala and bed of the nucleus stria terminalis, which contain CRH neurones and accumulate gamma-aminobenzoic acid during stress.


Sign in / Sign up

Export Citation Format

Share Document