scholarly journals The Excitatory Peptide Kisspeptin Restores the Luteinizing Hormone Surge and Modulates Amino Acid Neurotransmission in the Medial Preoptic Area of Middle-Aged Rats

Endocrinology ◽  
2009 ◽  
Vol 150 (8) ◽  
pp. 3699-3708 ◽  
Author(s):  
Genevieve Neal-Perry ◽  
Diane Lebesgue ◽  
Matthew Lederman ◽  
Jun Shu ◽  
Gail D. Zeevalk ◽  
...  

Reproductive success depends on a robust and appropriately timed preovulatory LH surge. The LH surge, in turn, requires ovarian steroid modulation of GnRH neuron activation by the neuropeptide kisspeptin and glutamate and γ-aminobutyric acid (GABA) neurotransmission in the medial preoptic area (mPOA). Middle-aged females exhibit reduced excitation of GnRH neurons and attenuated LH surges under estrogen-positive feedback conditions, in part, due to increased GABA and decreased glutamate neurotransmission in the mPOA. This study tested the hypothesis that altered kisspeptin regulation by ovarian steroids plays a role in age-related LH surge dysfunction. We demonstrate that middle-aged rats exhibiting delayed and attenuated LH surges have reduced levels of Kiss1 mRNA in the anterior hypothalamus under estrogen-positive feedback conditions. Kisspeptin application directly into the mPOA rescues total LH release and the LH surge amplitude in middle-aged rats and increases glutamate and decreases GABA release to levels seen in the mPOA of young females. Moreover, the N-methyl-d-aspartate receptor antagonist MK801 blocks kisspeptin reinstatement of the LH surge. These observations suggest that age-related LH surge dysfunction results, in part, from reduced kisspeptin drive under estrogen-positive feedback conditions and that kisspeptin regulates GnRH/LH release, in part, through modulation of mPOA glutamate and GABA release.

2007 ◽  
Vol 1184 ◽  
pp. 186-192 ◽  
Author(s):  
Joyce C. Chen ◽  
Houng-Wei Tsai ◽  
Kuei-Ying Yeh ◽  
Mei-Yun Tai ◽  
Yuan-Feen Tsai

Endocrinology ◽  
2003 ◽  
Vol 144 (1) ◽  
pp. 274-280 ◽  
Author(s):  
Adrienne B. Cashion ◽  
Matthew J. Smith ◽  
Phyllis M. Wise

Abstract The morphometry of astrocytes in the arcuate nucleus exhibits cyclic changes during the estrous cycle leading to dynamic changes in the communication between neurotransmitters and neuropeptides that regulate pituitary hormone secretion. Data suggest that remodeling of direct and/or indirect inputs into GnRH neurons may influence the timing and/or amplitude of the preovulatory LH surge in young rats. We have previously found that aging alters the timing and amplitude of the LH surge. Therefore, the purpose of this study was to focus on the rostral preoptic area where GnRH cell bodies reside. We assessed the possibility that the morphometry of astrocytes in the rostral preoptic area displays time-related and age-dependent changes on proestrus. Our results demonstrate that, in young rats, astrocyte cell surface area decreases between 0800 h and 1200 h, before the initiation of the LH surge. Changes in surface area over the cycle were specific to astrocytes in close apposition to GnRH neurons. In contrast, in middle-aged rats astrocyte surface area was significantly less than in young rats and did not change during the day. These findings suggest that a loss of astrocyte plasticity could lead to the delayed and attenuated LH surge that has been previously observed in middle-aged rats.


1984 ◽  
Author(s):  
◽  
Benjamin Adler

These studies tested the interrelated hypotheses that the ovarian hormones produce their positive feedback effects on luteinizing hormone (LH) secretion through activation of noradrenergic and adrenergic systems in specific hypothalamic regions. Furthermore, the ovarian hormones may alter the activity of opioid neuropeptide and Gamma-Aminobutyric Acid (GABA) systems to produce these alterations in catecholamine transmission and gonadotropin secretion. Radioimmunoassays were utilized to determine plasma LH and median eminence LHRH, and hypothalamic catecholamine concentrations were measured by radioenzymatic assay. The first two studies tested whether epinephrine (EPI) synthesis inhibition blocks the accumulation of median eminence LHRH that precedes the ovarian hormone-induced LH surge and also to test whether the stimulatory ovarian hormone regimen enhances the activity of hypothalamic EPI systems. Ovariectomized rats were primed with estradiol (EB), followed 2 days later by progesterone (Prog.). Animals were treated before Prog, administration with saline, one of the EPI synthesis inhibitors SKF 64139 or LY 78335, or the norepinephrine (NE) synthesis inhibitor, FLA-63. The catecholamine synthesis inhibitors blocked or delayed the LH surge. FLA-63 completely prevented the accumulation of LHRH in the median eminence that preceded the rise in LH release. However, selective reduction in EPI levels with SKF 64139 only partially prevented this increase in LHRH. A second EPI synthesis inhibitor, LY 78335, delayed both the LH surge and the rise in LHRH. In a second experiment, the administration of EB plus Prog, to ovariectomized rats increased the alpha-methyltyrosine (aMT) induced depletion of EPI in the medial basal hypothalamus (MBH). The depletion of NE after synthesis inhibition was enhanced in both the MBH and preoptic-anterior hypothalamus (POA). Experiments 3 and 4 examined a possible mechanism underlying these ovarian hormone effects on LH release and catecholamine activity. These studies tested whether the opiate antagonist, naloxone, which increases LH release, enhances the activity of NE and EPI neurons in the hypothalamus, and also tested whether morphine, an opiate agonist which decreases LH release, depresses the activity of hypothalamic NE and EPI activity. Administration of naloxone to EB-primed rats increased LH release and potentiated the depletion of NE in the POA and MBH, and enhanced the decline of EPI and dopamine (DA) in the MBH, suggesting increased catecholamine activity in these regions. Administration of the opiate agonist, morphine, to rats pretreated with EB and Prog., decreased LH and decreased the depletion of the catecholamines in the POA and MBH, suggesting reduced activity. In most cases, naloxone antagonized the inhibitory effect of morphine. Experiments 3, 6, and 7 examined the involvement of (GABA) systems in the positive feedback effects of EB and Prog, on LHRH and LH release. These studies tested 1) the effects of GABAergic drugs on the LH surge induced by EB and Prog., 2) whether GABA agonists reduce NE and EPI activity in the hypothalamus, and 3) whether a GABA agonist prevents the accumulation of median eminence LHRH induced by EB and Prog. Ovariectomized rats received the stimulatory EB plus Prog, treatment. Simultaneously with Prog., rats received either saline, the barbiturate, phenobarbital, the GABAg agonist, baclofen, the GABA^ agonist, muscimol, or either the GABA^ antagonist, bicuculline, or the putative GABAg antagonist, 5-aminovalerate. Additional experiments tested the effects of the GABA drugs on LH release in ovariectomized, hormonally untreated rats and in response to exogenous LHRH. The LH surge induced by EB+Prog. was blocked by treatment with either baclofen, muscimol, or phenobarbital. Bicuculline was ineffective in preventing the effect of baclofen and phonobarbital but partially prevented the effect of muscimol. Neither baclofen nor muscimol significantly affected LH release in hormonally untreated, ovariectomized rats or in rats receiving LHRH administration. In the results of Experiment 6, in EB plus Prog.-treated rats, baclofen and muscimol significantly reduced the concentrations of EPI and NE in the POA and MBH and prevented their decline after administration of otMT, suggesting decreased catecholamine transmission. In Experiment 7, rats were primed with the ovarian hormones and received, concurrently with Prog., either saline, or baclofen. The GABAg agonist, baclofen, blocked the LH surge and selectively increased LHRH concentrations. Experiment 8 tested 1) whether baclofen reverses the enhancement of LH release and catecholamine activity produced by naloxone, and 2) whether the opiate antagonist, nalmefene, prevents the blockade of the LH surge produced by baclofen. In the first study of Experiment 8, naloxone increased LH release and enhanced catecholamine activity in EB-primed rats. Baclofen was unable to reverse these effects. In the second study, baclofen administration to EB plus P treated rats blocked the LH surge and concomitant administration of nalmefene was unable to prevent this effect of baclofen. These results suggest that: 1) the ovarian hormones activate both NE and EPI systems to stimulate the early afternoon rise of LHRH in the median eminence and to induce the subsequent LH surge, 2) the ovarian hormones may produce their positive feedback effects on LH secretion by removing an inhibitory GABA or opioid neuropeptide influence on catecholamine transmission, allowing NE and EPI to stimulate LHRH, and subsequently, LH release, and 3) these modulatory actions of GABA and opiates may represent effects of two parallel, yet independent hypothalamic systems which regulate catecholamine neurotransmission and subsequently LH secretion.


Endocrinology ◽  
2013 ◽  
Vol 154 (1) ◽  
pp. 363-374 ◽  
Author(s):  
Raphael E. Szawka ◽  
Maristela O. Poletini ◽  
Cristiane M. Leite ◽  
Marcelo P. Bernuci ◽  
Bruna Kalil ◽  
...  

The role of norepinephrine (NE) in regulation of LH is still controversial. We investigated the role played by NE in the positive feedback of estradiol and progesterone. Ovarian-steroid control over NE release in the preoptic area (POA) was determined using microdialysis. Compared with ovariectomized (OVX) rats, estradiol-treated OVX (OVX+E) rats displayed lower release of NE in the morning but increased release coincident with the afternoon surge of LH. OVX rats treated with estradiol and progesterone (OVX+EP) exhibited markedly greater NE release than OVX+E rats, and amplification of the LH surge. The effect of NE on LH secretion was confirmed using reverse microdialysis. The LH surge and c-Fos expression in anteroventral periventricular nucleus neurons were significantly increased in OVX+E rats dialyzed with 100 nm NE in the POA. After Fluoro-Gold injection in the POA, c-Fos expression in Fluoro-Gold/tyrosine hydroxylase-immunoreactive neurons increased during the afternoon in the A2 of both OVX+E and OVX+EP rats, in the locus coeruleus (LC) of OVX+EP rats, but was unchanged in the A1. The selective lesion of LC terminals, by intracerebroventricular N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine, reduced the surge of LH in OVX+EP but not in OVX+E rats. Thus, estradiol and progesterone activate A2 and LC neurons, respectively, and this is associated with the increased release of NE in the POA and the magnitude of the LH surge. NE stimulates LH secretion, at least in part, through activation of anteroventral periventricular neurons. These findings contribute to elucidation of the role played by NE during the positive feedback of ovarian steroids.


2015 ◽  
Vol 308 (11) ◽  
pp. E942-E949 ◽  
Author(s):  
Chiao-nan (Joyce) Chen ◽  
Shang-Ying Lin ◽  
Yi-Hung Liao ◽  
Zhen-jie Li ◽  
Alice May-Kuen Wong

Caloric restriction (CR) attenuates age-related muscle loss. However, the underlying mechanism responsible for this attenuation is not fully understood. This study evaluated the role of energy metabolism in the CR-induced attenuation of muscle loss. The aims of this study were twofold: 1) to evaluate the effect of CR on energy metabolism and determine its relationship with muscle mass, and 2) to determine whether the effects of CR are age dependent. Young and middle-aged rats were randomized into either 40% CR or ad libitum (AL) diet groups for 14 wk. Major energy-producing pathways in muscles, i.e., glycolysis and mitochondrial oxidative phosphorylation (OXPHOS), were examined. We found that the effects of CR were age dependent. CR improved muscle metabolism and normalized muscle mass in middle-aged animals but not young animals. CR decreased glycolysis and increased the cellular dependency for OXPHOS vs. glycolysis in muscles of middle-aged rats, which was associated with the improvement of normalized muscle mass. The metabolic reprogramming induced by CR was related to modulation of pyruvate metabolism and increased mitochondrial biogenesis. Compared with animals fed AL, middle-aged animals with CR had lower lactate dehydrogenase A content and greater mitochondrial pyruvate carrier content. Markers of mitochondrial biogenesis, including AMPK activation levels and SIRT1 and COX-IV content, also showed increased levels. In conclusion, 14 wk of CR improved muscle metabolism and preserved muscle mass in middle-aged animals but not in young developing animals. CR-attenuated age-related muscle loss is associated with reprogramming of the metabolic pathway from glycolysis to OXPHOS.


2011 ◽  
Vol 300 (4) ◽  
pp. R1001-R1008 ◽  
Author(s):  
Robert L. Thunhorst ◽  
Connie L. Grobe ◽  
Terry G. Beltz ◽  
Alan Kim Johnson

These experiments examined water-drinking and arterial blood pressure responses to β-adrenergic receptor activation in young (4 mo), “middle-aged” adult (12 mo), and old (29 mo) male rats of the Brown-Norway strain. We used isoproterenol to simultaneously activate β1- and β2-adrenergic receptors, salbutamol to selectively activate β2-adrenergic receptors, and the combination of isoproterenol and the β2-adrenergic receptor antagonist ICI 118,551 to stimulate only β1-adrenergic receptors. Animals received one of the drug treatments, and water drinking was measured for 90 min. About 1 wk later, animals received the same drug treatment for measurement of arterial blood pressure responses for 90 min. In some rats, levels of renin and aldosterone secretion in response to isoproterenol or salbutamol were measured in additional tests. Old and middle-aged rats drank significantly less after isoproterenol than did young rats and also had greater reductions in arterial blood pressure. Old and middle-aged rats drank significantly less after salbutamol than did young rats, although reductions in arterial blood pressure were equivalent across the ages. The β2-adrenergic antagonist ICI 118,551 abolished drinking after isoproterenol and prevented most of the observed hypotension. Renin secretion after isoproterenol and salbutamol was greater in young rats than in middle-aged rats, and wholly absent in old rats. Aldosterone secretion was reduced in old rats compared with young and middle-aged rats after treatment with isoproterenol, but not after treatment with salbutamol. In conclusion, there are age-related differences in β-adrenergic receptor-mediated drinking that can be explained only in part by age-related differences in renin secretion after β-adrenergic receptor stimulation.


Sign in / Sign up

Export Citation Format

Share Document