A lower bound to the rate of mass loss from a circular binary system evolving via emission of gravitational waves and Roche lobe overflow of degenerate component

1982 ◽  
Vol 92 (7) ◽  
pp. 366-368
Author(s):  
T.T. Chia ◽  
D.J.W. Geldart
2012 ◽  
Vol 8 (S290) ◽  
pp. 293-294
Author(s):  
Konstantin Pavlovskii ◽  
Natalia Ivanova

AbstractMany interacting binaries start their mass exchange when a donor overfilling its Roche lobe has evolved to a giant branch. The response of the donor's radius to the mass loss as compared to the response of its Roche lobe determines the fate of the binary system – whether it will proceed with a stable mass transfer, or experience dramatic common envelope event. Recent studies of responses of realistic giant's stellar models to a fast mass loss showed that this response is not purely adiabatic as previously thought but depends on the behavior of giant's superadiabatic surface layer. In this contribution, we explore in further details how an interplay between superadiabatic layer's thermal timescale and the dynamic timescale of the donor affects the donor's mass loss. We also find that the initiation of the mass loss causes mass loss induced pulsations.


1979 ◽  
Vol 83 ◽  
pp. 277-280 ◽  
Author(s):  
Nancy D. Morrison ◽  
Peter S. Conti

The star HD 93206 (=QZ Carinae) is a double-lined (Conti et al. 1977), eclipsing (Moffat and Seggewiss 1972) binary with a period of 6 d. Walborn (1973) classified it 09.7Ib:(n). Since the star is probably a member of the cluster Collander 228 (which is near η Carinae), its distance can be assumed to be 2600 pc. In principle, one can determine the masses of the components of HD 93206 from observations of the radial velocities and the light curve, and a spectroscopic orbit is the object of this investigation. A mass determination for an evolved star such as this one is especially important for checking recently computed evolutionary tracks with mass loss for massive stars (de Loore et al. 1977, Chiosi et al. 1978, Dearborn et al. 1978).


1974 ◽  
Vol 64 ◽  
pp. 36-36
Author(s):  
Arcadio Poveda ◽  
Christine Allen

A mass loss of 200 M⊙ per year, as conservatively suggested if Weber is detecting gravitational waves from an isotropic source at the galactic centre, is shown to be incompatible with the existence of (a) globular clusters, (b) old wide binaries, if this loss rate has been constant over the past 1010 yr.From the orbit of ω Centauri in the galactic field and its observed mass distribution and tidal radius an upper limit to the mass loss from the galactic centre is found to be 1 M⊙ yr-1 over the past 1010 yr.


1979 ◽  
Vol 83 ◽  
pp. 409-414
Author(s):  
D. Vanbeveren ◽  
J.P. De Grève ◽  
C. de Loore ◽  
E.L. van Dessel

It is generally accepted that massive (and thus luminous) stars lose mass by stellar wind, driven by radiation force (Lucy and Solomon, 1970; Castor et al. 1975). For the components of massive binary systems, rotational and gravitational effects may act together with the radiation force so as to increase the mass loss rate. Our intention here is to discuss the influence of a stellar wind mass loss on the evolution of massive close binaries. During the Roche lobe overflow phase, mass and angular momentum can leave the system. Possible reasons for mass loss from the system are for example the expansion of the companion due to accretion of the material lost by the mass losing star (Kippenhahn and Meyer-Hofmeister, 1977) or the fact that due to the influence of the radiation force in luminous stars, mass will be lost over the whole surface of the star and not any longer through a possible Lagrangian point as in the case of classical Roche lobe overflow (Vanbeveren, 1978). We have therefore investigated the influence of both processes on binary evolution. Our results are applied to 5 massive X-ray binaries with a possible implication for the existence of massive Wolf Rayet stars with a very close invisible compact companion. A more extended version of this talk is published in Astronomy and Astrophysics (Vanbeveren et al. 1978; Vanbeveren and De Grève, 1978). Their results will be briefly reviewed.


1995 ◽  
Vol 163 ◽  
pp. 562-564
Author(s):  
S.V. Marchenko ◽  
I.I. Antokhin ◽  
J.-F. Bertrand ◽  
R. Lamontagne ◽  
A.F.J. Moffat ◽  
...  

During the 1992–1993 observing season, WR3, 6, 16, 40, 66, 82 and 134 were monitored in fast photometry mode with time-resolution 0.005—0.01 s. Only WR6 reveals a possible period of P = 0.11 s (semi-amplitude A = 0.025 mag), which is close to the derived equilibrium period of a new-born pulsar in a binary system after the rapid phase of Roche Lobe Over-Flow from the original secondary component.


1981 ◽  
Vol 246 ◽  
pp. 569 ◽  
Author(s):  
B. Mashhoon ◽  
B. J. Carr ◽  
B. L. Hu

2002 ◽  
Vol 185 ◽  
pp. 102-103
Author(s):  
E. Rodríguez ◽  
V. Costa ◽  
M.J. López-González ◽  
J.M. García ◽  
S.L. Kim ◽  
...  

AbstractRZ Cas is an Algol-type eclipsing binary system where the primary component was recently discovered as a δ Set pulsator. A three-continent multisite photometric campaign was carried out during 1999. Preliminary results are reported here indicating a semi-detached system where the secondary fills its Roche lobe. The light curves also suggest a hot spot on the surface of the primary component as a consequence of the impact of the mass stream from the secondary. The pulsational behaviour can be well described with only one frequency.


Sign in / Sign up

Export Citation Format

Share Document