Magmatic and phreatomagmatic volcanic activity at Mt. Takahe, West Antarctica, based on tephra layers in the Byrd ice core and field observations at Mt. Takahe

1988 ◽  
Vol 35 (4) ◽  
pp. 295-317 ◽  
Author(s):  
Julie M. Palais ◽  
Philip R. Kyle ◽  
William C. McIntosh ◽  
Diane Seward
1985 ◽  
Vol 7 ◽  
pp. 42-48 ◽  
Author(s):  
J.M. Palais

In 1968 an ice core 2164 m long was recovered from Byrd station in West Antarctica. About 2000 tephra layers were observed in the core and have been differentiated into ash and dust bands according to the grain size and concentration of particles in the layers. Mount Takahe, a local volcano in Marie Byrd Land, Antarctica is the probable source. Detailed examinations of the particle morphology, composition and ice chemistry associated with some of the tephra layers have led to the conclusion that the eruptions which produced the layers were probably hydrovolcanic. Melted glacier ice is considered the most likely source of the water involved in the eruptions. Processes associated with hydrovolcanism such as particle aggregation (causing premature deposition of fine particles), rapid conversion of sulfur dioxide to sulfuric acid (in the presence of abundant moisture) and scavenging of acid droplets by the fine dust particles are inferred to have taken place. Such processes would greatly reduce the atmospheric residence time of the eruptive products and thus their atmospheric and climatic impact.


1985 ◽  
Vol 7 ◽  
pp. 42-48 ◽  
Author(s):  
J.M. Palais

In 1968 an ice core 2164 m long was recovered from Byrd station in West Antarctica. About 2000 tephra layers were observed in the core and have been differentiated into ash and dust bands according to the grain size and concentration of particles in the layers. Mount Takahe, a local volcano in Marie Byrd Land, Antarctica is the probable source.Detailed examinations of the particle morphology, composition and ice chemistry associated with some of the tephra layers have led to the conclusion that the eruptions which produced the layers were probably hydrovolcanic. Melted glacier ice is considered the most likely source of the water involved in the eruptions.Processes associated with hydrovolcanism such as particle aggregation (causing premature deposition of fine particles), rapid conversion of sulfur dioxide to sulfuric acid (in the presence of abundant moisture) and scavenging of acid droplets by the fine dust particles are inferred to have taken place. Such processes would greatly reduce the atmospheric residence time of the eruptive products and thus their atmospheric and climatic impact.


1998 ◽  
Vol 27 ◽  
pp. 333-337 ◽  
Author(s):  
Dome-F Deep Coring Group

The Dome Fuji Project is a comprehensive study of present and past glaeiological/climatological features of the Antarctic ice sheet in east Dronning Maud Land. Field observations on a 100U km traverse route from the coast to Dome Fuji slum changes in various glaciological parameters with surface elevation and distance from the coast. Deep ice-core drilling at Dome Fuji was started in August 1995 and reached a depth of 2503.52 m in December 1996. in situ core analyses revealed 25 visible tephra layers and a number of distinct cloudy bands in the ice.


1988 ◽  
Vol 30 (3) ◽  
pp. 315-330 ◽  
Author(s):  
Julie M. Palais ◽  
Philip R. Kyle

The chemical composition of ice containing tephra (volcanic ash) layers in 22 sections of the Byrd Station ice core was examined to determine if the volcanic eruptions affected the chemical composition of the atmosphere and precipitation in the vicinity of Byrd Station. The liquid conductivity, acidity, sulfate, nitrate, aluminum, and sodium concentrations of ice samples deposited before, during, and after the deposition of the tephra layers were analyzed. Ice samples that contain tephra layers have, on average, about two times more sulfate and three to four times more aluminum than nonvolcanic ice samples. The acidity of ice samples associated with tephra layers is lowered by hydrolysis of silicate glass and minerals. Average nitrate, sodium, and conductivity are the same in all samples. Because much of the sulfur and chlorine originally associated with these eruptions may have been scavenged by ash particles, the atmospheric residence time of these volatiles would have been minimized. Therefore the eruptions probably had only a small effect on the composition of the Antarctic atmosphere and a negligible effect on local or global climate.


2016 ◽  
Vol 97 (1) ◽  
pp. 111-121 ◽  
Author(s):  
M. N. Raphael ◽  
G. J. Marshall ◽  
J. Turner ◽  
R. L. Fogt ◽  
D. Schneider ◽  
...  

Abstract The Amundsen Sea low (ASL) is a climatological low pressure center that exerts considerable influence on the climate of West Antarctica. Its potential to explain important recent changes in Antarctic climate, for example, in temperature and sea ice extent, means that it has become the focus of an increasing number of studies. Here, the authors summarize the current understanding of the ASL, using reanalysis datasets to analyze recent variability and trends, as well as ice-core chemistry and climate model projections, to examine past and future changes in the ASL, respectively. The ASL has deepened in recent decades, affecting the climate through its influence on the regional meridional wind field, which controls the advection of moisture and heat into the continent. Deepening of the ASL in spring is consistent with observed West Antarctic warming and greater sea ice extent in the Ross Sea. Climate model simulations for recent decades indicate that this deepening is mediated by tropical variability while climate model projections through the twenty-first century suggest that the ASL will deepen in some seasons in response to greenhouse gas concentration increases.


2021 ◽  
Author(s):  
Giovanni Baccolo ◽  
Barbara Delmonte ◽  
Paul Niles ◽  
Giannantonio Cibin ◽  
Elena Di Stefano ◽  
...  

<p>On Earth, jarosite is a weathering product forming in acidic-oxidative environments from the alteration of iron-bearing minerals in presence of liquid water. Typical settings where this iron-potassium hydrated sulphate is found, are weathering zones of pyrite-rich deposits, evaporative basins and fumaroles. Jarosite is not only known on Earth, it also occurs on Mars, where it was firstly identified by the Opportunity rover. The mineral was in fact recognized in the finely layered formations outcropping at Meridiani Planum and that were accurately investigated by the rover (Klingelhöfer et al. 2004). Since jarosite requires liquid water to form, its occurrence on Mars has been regarded as an evidence for the presence of liquid water in the geologic past of Mars (Elwood-Madden et al., 2004). Since then, many models have been proposed to describe the environments where the precipitation of Martian jarosite took place. The most accepted ones deal with evaporative basins similar to Earth’s playas, others concern volcanic activity and hydrothermal processes. An alternative proposal predicted that jarosite may have formed as a consequence of weathering of mineral dust trapped in massive ice deposits, i.e. the ice-weathering model (Niles & Michalsky, 2009). The hypothesis that jarosite formed on Mars because of low-temperature, acidic and water limited weathering, is not new (Burns, 1987), but until now no direct evidences were available to support it.</p><p>A potential Earth analogue to investigate such processes is deep Antarctic ice. We present a first investigation of deep ice samples from the Talos Dome ice core (East Antarctica) aimed at the identification of englacial jarosite, so as to support the ice-weathering model. Evidences gathered through independent techniques showed that jarosite is actually present in deep Antarctic ice and results from the weathering of dust trapped into ice. The process is controlled by the re-crystallization of ice grains and the concurrent re-location of impurities at grain-junctions, which both depend on ice depth. This study demonstrates that the deep englacial environment is suitable for jarosite precipitation. Our findings support the hypothesis that, as originally predicted by the ice-weathering model, paleo ice-related processes have been important in the geologic and geochemical history of Mars.</p><p> </p><p><strong>References</strong></p><p>Burns, R. Ferric sulfates on Mars. <em>J. Geophys. Res.</em> <strong>92</strong>, E570-E574 (1987).</p><p>Elwood-Madden et al., 2004. Jarosite as an indicator of water-limited chemical weathering on Mars. <em>Nature</em> <strong>431</strong>, 821-823 (2004).</p><p>Klingelhöfer, G. et al. Jarosite and Hematite at Meridiani Planum from Opportunity's Mössbauer Spectrometer. <em>Science</em> <strong>306</strong>, 1740-1745 (2004).</p><p>Niles, P. B. & Michalski, J. M. Meridiani Planum sediments on Mars formed through weathering in massive ice deposits. <em>Nat. Geosci.</em> <strong>2</strong>, 215-220 (2009).</p>


2011 ◽  
Vol 30 (13-14) ◽  
pp. 1602-1614 ◽  
Author(s):  
Nelia W. Dunbar ◽  
Andrei V. Kurbatov
Keyword(s):  
Ice Core ◽  

2020 ◽  
Author(s):  
Abhijith U. Venugopal ◽  
Nancy A. N. Bertler ◽  
Rebecca L. Pyne ◽  
Helle A. Kjær ◽  
V. Holly L. Winton ◽  
...  

2017 ◽  
Author(s):  
Mai Winstrup ◽  
Paul Vallelonga ◽  
Helle A. Kjær ◽  
Tyler J. Fudge ◽  
James E. Lee ◽  
...  

Abstract. We present a 2700-year annually resolved timescale for the Roosevelt Island Climate Evolution (RICE) ice core, and reconstruct a past snow accumulation history for the coastal sector of the Ross Ice Shelf in West Antarctica. The timescale was constructed by identifying annual layers in multiple ice-core impurity records, employing both manual and automated counting approaches, and constitutes the top part of the Roosevelt Island Ice Core Chronology 2017 (RICE17). The maritime setting of Roosevelt Island results in high sulfate influx from sea salts and marine biogenic emissions, which prohibits a routine detection of volcanic eruptions in the ice-core records. This led to the use of non-traditional chronological techniques for validating the timescale: RICE was synchronized to the WAIS Divide ice core, on the WD2014 timescale, using volcanic attribution based on direct measurements of ice-core acidity, as well as records of globally-synchronous, centennial-scale variability in atmospheric methane concentrations. The RICE accumulation history suggests stable values of 0.25 m water equivalent (w.e.) per year until around 1260 CE. Uncertainties in the correction for ice flow thinning of annual layers with depth do not allow a firm conclusion about long-term trends in accumulation rates during this early period but from 1260 CE to the present, accumulation rate trends have been consistently negative. The decrease in accumulation rates has been increasingly rapid over the last centuries, with the decrease since 1950 CE being more than 7 times greater than the average over the last 300 years. The current accumulation rate of 0.22 ± 0.06 m w.e. yr−1 (average since 1950 CE, ±1σ) is 1.49 standard deviations (86th percentile) below the mean of 50-year average accumulation rates observed over the last 2700 years.


Sign in / Sign up

Export Citation Format

Share Document