In situ water transmission characteristics of a tropical soil under rice-based cropping systems

1984 ◽  
Vol 8 (4) ◽  
pp. 387-396 ◽  
Author(s):  
S.S. Hundal ◽  
S.K. De Datta
2021 ◽  
Author(s):  
Wentao Wang ◽  
Jerome P. Lynch ◽  
Curt Wolf ◽  
John Norton ◽  
Todd W. King ◽  
...  

2019 ◽  
Vol 37 (3) ◽  
pp. 263
Author(s):  
Breno Padovezi Rocha ◽  
Heraldo Luiz Giacheti

ABSTRACT. The shear wave velocity (Vs) is an important geotechnical parameter to be used in dynamic problems (e.g. earthquakes and vibration problems) as well as in static deformation analysis such as excavations and foundation engineering design. There are several in situ seismic tests to determine Vs such as the crosshole and the downhole techniques, as well as hybrid tests (e.g. seismic dilatometer – SDMT). This paper presents crosshole, downhole and SDMT tests carried out in a typical tropical soil profile from Brazil. Advantages and limitations regarding the test procedures and interpretation are briefly presented and differences observed among Vs determined by these techniques are discussed. Shear wave velocities (Vs) estimated from the crosshole, downhole and SDMT tests ranging from 194 to 370 m/s. The shear wave velocity suggests that the experimental site could be divided into two strata, which are in agreement with soil profile description. The maximum shear modulus (G0) calculated from the Vs by theory of elasticity can be used to show the investigated tropical soil is a typical unusual geomaterial. This article also emphasizes that the SDMT is a useful test for site investigation since it allows a great means for profiling geostratigraphy and soil engineering properties during routine site investigation as well as for dynamics problems. Keywords: shear wave velocity, maximum shear modulus, crosshole, downhole, SDMT.RESUMO. A velocidade de onda cisalhante (Vs) é um parâmetro geotécnico empregado em análises dinâmicas (terremotos e problemas de vibração), bem como em análises estáticas (escavações e projeto de fundações). Existem vários ensaios sísmicos de campo para a determinação de Vs, entre eles as técnicas crosshole e downhole, e os ensaios híbridos (por exemplo, dilatômetro sísmico – SDMT). Este artigo apresenta os ensaios crosshole, downhole e SDMT realizados em um perfil típico de solo tropical do Brasil, as vantagens e limitações dos procedimentos de ensaio e de interpretação são brevemente apresentadas, e as diferenças observadas entre os valores de Vs determinados pelas diferentes técnicas são discutidas. Os perfis de Vs determinados pelas diferentes técnicas variaram de 194 a 370 m/s. A velocidade da onda cisalhante sugere que o campo experimental investigado pode ser dividido em dois horizontes, os quais estão de acordo com a descrição do perfil do solo estudado. O módulo de cisalhamento máximo (G0), calculado a partir de Vs pela teoria da elasticidade, pode ser utilizado para demonstrar o comportamento não convencional do solo investigado. Este artigo também enfatiza que o SDMT é um ensaio geotécnico útil para a investigação geotécnica do subsolo, uma vez que permite a definição do perfil estratigráfico e a estimativa de parâmetros estáticos e dinâmicos de um projeto.Palavras-chave: velocidade de onda cisalhante, módulo de cisalhamento máximo, crosshole, downhole, SDMT.


2017 ◽  
Vol 111 ◽  
pp. 44-59 ◽  
Author(s):  
Hugues Clivot ◽  
Bruno Mary ◽  
Matthieu Valé ◽  
Jean-Pierre Cohan ◽  
Luc Champolivier ◽  
...  

2013 ◽  
Vol 64 (8) ◽  
pp. 799 ◽  
Author(s):  
N. R. Hulugalle ◽  
T. B. Weaver ◽  
L. A. Finlay ◽  
V. Heimoana

Long-term studies of soil organic carbon dynamics in two- and three-crop rotations in irrigated cotton (Gossypium hirsutum L.) based cropping systems under varying stubble management practices in Australian Vertosols are relatively few. Our objective was to quantify soil organic carbon dynamics during a 9-year period in four irrigated, cotton-based cropping systems sown on permanent beds in a Vertosol with restricted subsoil drainage near Narrabri in north-western New South Wales, Australia. The experimental treatments were: cotton–cotton (CC); cotton–vetch (Vicia villosa Roth. in 2002–06, Vicia benghalensis L. in 2007–11) (CV); cotton–wheat (Triticum aestivum L.), where wheat stubble was incorporated (CW); and cotton–wheat–vetch, where wheat stubble was retained as in-situ mulch (CWV). Vetch was terminated during or just before flowering by a combination of mowing and contact herbicides, and the residues were retained as in situ mulch. Estimates of carbon sequestered by above- and below-ground biomass inputs were in the order CWV >> CW = CV > CC. Carbon concentrations in the 0–1.2 m depth and carbon storage in the 0–0.3 and 0–1.2 m depths were similar among all cropping systems. Net carbon sequestration rates did not differ among cropping systems and did not change significantly with time in the 0–0.3 m depth, but net losses occurred in the 0–1.2 m depth. The discrepancy between measured and estimated values of sequestered carbon suggests that either the value of 5% used to estimate carbon sequestration from biomass inputs was an overestimate for this site, or post-sequestration losses may have been high. The latter has not been investigated in Australian Vertosols. Future research efforts should identify the cause and quantify the magnitude of these losses of organic carbon from soil.


Sign in / Sign up

Export Citation Format

Share Document