Changes in Organic Matter of a Ferrallitic Tropical Soil Degraded by Cropping Systems: The Case of Southern Senegal

2000 ◽  
Vol 14 (2) ◽  
pp. 137-150 ◽  
Author(s):  
Paula Fernandes ◽  
Robert Oliver ◽  
Sitapha Diatta
2001 ◽  
Vol 81 (1) ◽  
pp. 21-31 ◽  
Author(s):  
E G Gregorich ◽  
C F Drury ◽  
J A Baldock

Legume-based cropping systems could help to increase crop productivity and soil organic matter levels, thereby enhancing soil quality, as well as having the additional benefit of sequestering atmospheric C. To evaluate the effects of 35 yr of maize monoculture and legume-based cropping on soil C levels and residue retention, we measured organic C and 13C natural abundance in soils under: fertilized and unfertilized maize (Zea mays L.), both in monoculture and legume-based [maize-oat (Avena sativa L.)-alfalfa (Medicago sativa L.)-alfalfa] rotations; fertilized and unfertilized systems of continuous grass (Poa pratensis L.); and under forest. Solid state 13C nuclear magnetic resonance (NMR) was used to chemically characterize the organic matter in plant residues and soils. Soils (70-cm depth) under maize cropping had about 30-40% less C, and those under continuous grass had about 16% less C, than those under adjacent forest. Qualitative differences in crop residues were important in these systems, because quantitative differences in net primary productivity and C inputs in the different agroecosystems did not account for observed differences in total soil C. Cropping sequence (i.e., rotation or monoculture) had a greater effect on soil C levels than application of fertilizer. The difference in soil C levels between rotation and monoculture maize systems was about 20 Mg C ha-1. The effects of fertilization on soil C were small (~6 Mg C ha-1), and differences were observed only in the monoculture system. The NMR results suggest that the chemical composition of organic matter was little affected by the nature of crop residues returned to the soil. The total quantity of maize-derived soil C was different in each system, because the quantity of maize residue returned to the soil was different; hence the maize-derived soil C ranged from 23 Mg ha-1 in the fertilized and 14 Mg ha-1 in the unfertilized monoculture soils (i.e., after 35 maize crops) to 6-7 Mg ha-1 in both the fertilized and unfertilized legume-based rotation soils (i.e., after eight maize crops). The proportion of maize residue C returned to the soil and retained as soil organic C (i.e., Mg maize-derived soil C/Mg maize residue) was about 14% for all maize cropping systems. The quantity of C3-C below the plow layer in legume-based rotation was 40% greater than that in monoculture and about the same as that under either continuous grass or forest. The soil organic matter below the plow layer in soil under the legume-based rotation appeared to be in a more biologically resistant form (i.e., higher aromatic C content) compared with that under monoculture. The retention of maize residue C as soil organic matter was four to five times greater below the plow layer than that within the plow layer. We conclude that residue quality plays a key role in increasing the retention of soil C in agroecosystems and that soils under legume-based rotation tend to be more “preservative” of residue C inputs, particularly from root inputs, than soils under monoculture. Key words: Soil carbon, 13C natural abundance, 13C nuclear magnetic resonance, maize cropping, legumes, root carbon


2017 ◽  
Vol 111 ◽  
pp. 44-59 ◽  
Author(s):  
Hugues Clivot ◽  
Bruno Mary ◽  
Matthieu Valé ◽  
Jean-Pierre Cohan ◽  
Luc Champolivier ◽  
...  

2022 ◽  
Vol 216 ◽  
pp. 105229
Author(s):  
José Miguel Reichert ◽  
Adão Leonel Corcini ◽  
Gabriel Oladele Awe ◽  
Dalvan José Reinert ◽  
Jackson Adriano Albuquerque ◽  
...  

2018 ◽  
Vol 36 (0) ◽  
Author(s):  
M.F.F. TEIXEIRA ◽  
A.A. SILVA ◽  
M.A. NASCIMENTO ◽  
L.S. VIEIRA ◽  
T.P.M TEIXEIRA ◽  
...  

ABSTRACT: Tebuthiuron is one of the most widely used herbicides in the sugarcane culture and its characteristic is the long persistence in soil. When used without knowing its interactions with soil attributes, it can reduce the sustainability of cropping systems and contaminate surface and groundwaters. In this research, by using a high-performance liquid chromatography, the effects of adding organic matter in a Red-Yellow Latosol were evaluated, as for the sorption and desorption of tebuthiuron. It was concluded that there is a direct relation between the sorption of tebuthiuron and the organic matter content in Red-Yellow Latosols and there is an inverse relation for desorption. The hysteresis index was lower in samples with high organic matter content.


2018 ◽  
Vol 111 (1) ◽  
pp. 33
Author(s):  
Yang YONG ◽  
Yue-gao HU ◽  
Mohamad Hesam SHAHRAJABIAN ◽  
Chang-zhong REN ◽  
Lai-chun GUO ◽  
...  

<p>One of the most important and sustainable cropping practice is intercropping. The study was conducted under field conditions in the arid Horqine sandy land in Baicheng District, Jilin Province, Northern China in 2011. A randomized complete block design with four replications was used. Treatments comprised different mono cropping and intercropping patterns, TO: sole cropping of oat, TOS-O: oat in the intercropping of oat and soybean, TOG-O: oat in the intercropping of oat and groundnut, TS: sole cropping of soybean, TOS-S: soybean in intercropping of oat and soybean, TG: sole cropping of groundnut, TOG-G: groundnut in the intercropping of oat and groundnut. In mono-cropping systems, oat mono-cropping obtained the highest dry matter and nitrogen accumulation in all growth stages. The maximum protein percentage in all stages except for ripening stage, were for groundnut mono-cropping. Although, the maximum organic matter in ripening stage was achieved in mono-cropping of soybean, the highest one in other stages was related to groundnut mono-cropping. In intercropping patterns, oat in oat-groundnut obtained the highest dry matter in all stages. The highest value of protein percentage and organic matter in heading stage, grain filling stage, and grain dough stage was achieved in groundnut in oat-groundnut intercropping. Furthermore, the maximum value of protein percentage and organic matter in booting stage and ripening stage was related to soybean in oat-soybean intercropping. The results of this study clearly indicate that intercropping oat and groundnut affects the growth rate of the individual species in mixtures as well as the dry matter yield and nitrogen accumulation. This information can help in the adaptation of oat- intercrops for increased forage production in new cropping systems.</p>


2010 ◽  
Vol 74 (4) ◽  
pp. 1320-1326 ◽  
Author(s):  
Baokun Lei ◽  
Mingsheng Fan ◽  
Qing Chen ◽  
Johan Six ◽  
Fusuo Zhang

Sign in / Sign up

Export Citation Format

Share Document