Computational models of a rock-bed thermal storage unit

1987 ◽  
Vol 4 (2) ◽  
pp. 215-218 ◽  
Author(s):  
Omar Zarty ◽  
Awatef El Juddaimi
2020 ◽  
Vol 148 ◽  
pp. 987-1001 ◽  
Author(s):  
Pouyan Talebizadeh Sardari ◽  
Donald Giddings ◽  
David Grant ◽  
Mark Gillott ◽  
Gavin S. Walker

2016 ◽  
Vol 138 (6) ◽  
Author(s):  
Kenneth Allen ◽  
Lukas Heller ◽  
Theodor von Backström

A major advantage of concentrating solar power (CSP) plants is their ability to store thermal energy at a cost far lower than that of current battery technologies. A recent techno-economic study found that packed rock bed thermal storage systems can be constructed with capital costs of less than 10 United States dollar (USD)/kWht, significantly cheaper than the two-tank molten salt thermal storage currently used in CSP plants (about 22–30 USD/kWht). However, little work has been published on determining optimum rock bed design parameters in the context of a CSP plant. The parametric study in this paper is intended to provide an overview of the bed flow lengths, particle sizes, mass fluxes, and Biot numbers which are expected to minimize the levelized cost of electricity (LCOE) for a central receiver CSP plant with a nominal storage capacity of 12 h. The findings show that rock diameters of 20–25 mm will usually give LCOE values at or very close to the minimum LCOE for the combined rock bed and CSP plant. Biot numbers between 0.1 and 0.2 are shown to have little influence on the position of the optimum (with respect to particle diameter) for all practical purposes. Optimum bed lengths are dependent on the Biot number and range between 3 and 10 m for a particle diameter of 20 mm.


Author(s):  
Monica F. Bonadies ◽  
Son H. Ho ◽  
J. S. Kapat

When collecting the energy of the sun for domestic use, there are several options, which include photovoltaic cells and evacuated tube collectors. Arrays of evacuated tube collectors are used to heat water for domestic applications, supplementing the use of a typical hot water heater, while photovoltaic cells transform the sun’s radiation into electricity. The benefit of the tube collectors is that they supplement an appliance that uses a fairly large amount of electricity when compared to others in an average home. However, the collectors cannot operate during the night time and produce more hot water than needed at their peak operation point. A thermal storage unit can be used to even out the conversion of energy throughout the day to solve this problem. This study proposes a system using paraffin wax to store thermal energy collected during the day by melting the wax. The system makes use of a finned heat exchanger, with paraffin wax on the shell side, and glycol on the tube side as the heat transfer fluid. It also includes a separate loop for water to flow through and receive thermal energy from the melted wax. Although the wax used in the study is quite effective at storing thermal energy, it has the problem of low conductivity. So, fins are added to the storage and extraction loops to increase the wax’s thermal conductivity. The fins not only help to melt the wax more quickly but also act as nucleation sites when the wax freezes. Once all the wax is melted, energy can be exchanged from it to heat water. When creating such a unit, it is useful to have simulation tools to guide its design. One such tool is FLUENT, which will be used in this study to create a simulation of part of the unit. The simulation will be compared to experimental data from a prototype unit and evaluated based upon its strengths and weaknesses.


Sign in / Sign up

Export Citation Format

Share Document