Hemodynamic effects of external continuous negative pressure ventilation compared with those of continuous positive pressure ventilation in dogs with acute lung injury

1988 ◽  
Vol 3 (4) ◽  
pp. 277
2014 ◽  
Vol 120 (4) ◽  
pp. 943-950 ◽  
Author(s):  
Matteo Pecchiari ◽  
Ario Monaco ◽  
Antonia Koutsoukou ◽  
Patrizia Della Valle ◽  
Guendalina Gentile ◽  
...  

Abstract Background: Recent studies in healthy mice and rats have reported that positive pressure ventilation delivered with physiological tidal volumes at normal end-expiratory volume worsens lung mechanics and induces cytokine release, thus suggesting that detrimental effects are due to positive pressure ventilation per se. The aim of this study in healthy animals is to assess whether these adverse outcomes depend on the mode of mechanical ventilation. Methods: Rats were subjected to 4 h of spontaneous, positive pressure, and whole-body or thorax-only negative pressure ventilation (N = 8 per group). In all instances the ventilatory pattern was that of spontaneous breathing. Lung mechanics, cytokines concentration in serum and broncho–alveolar lavage fluid, lung wet-to-dry ratio, and histology were assessed. Values from eight animals euthanized shortly after anesthesia served as control. Results: No evidence of mechanical ventilation–dependent lung injury was found in terms of lung mechanics, histology, or wet-to-dry ratio. Relative to control, cytokine levels and recruitment of polymorphonuclear leucocytes increased slightly, and to the same extent with spontaneous, positive pressure, and whole-body negative pressure ventilation. Thorax-only negative pressure ventilation caused marked chest and lung distortion, reversible increase of lung elastance, and higher polymorphonuclear leucocyte count and cytokine levels. Conclusion: Both positive and negative pressure ventilation performed with tidal volumes and timing of spontaneous, quiet breathing neither elicit an inflammatory response nor cause morpho-functional alterations in normal animals, thus supporting the notion of the presence of a critical volume threshold above which acute lung injury ensues. Distortion of lung parenchyma can induce an inflammatory response, even in the absence of volotrauma.


CHEST Journal ◽  
1995 ◽  
Vol 108 (4) ◽  
pp. 1041-1048 ◽  
Author(s):  
Jacques-Andre Romand ◽  
Weizhong Shi ◽  
Michael R. Pinsky

2017 ◽  
Vol 8 (1) ◽  
pp. 204589321775359 ◽  
Author(s):  
Kal E. Watson ◽  
Gilad S. Segal ◽  
Robert L. Conhaim

We compared acinar perfusion in isolated rat lungs ventilated using positive or negative pressures. The lungs were ventilated with air at transpulmomary pressures of 15/5 cm H2O, at 25 breaths/min, and perfused with a hetastarch solution at Ppulm art/PLA pressures of 10/0 cm H2O. We evaluated overall perfusability from perfusate flows, and from the venous concentrations of 4-µm diameter fluorescent latex particles infused into the pulmonary circulation during perfusion. We measured perfusion distribution from the trapping patterns of those particles within the lung. We infused approximately 9 million red fluorescent particles into each lung, followed 20 min later by an infusion of an equal number of green particles. In positive pressure lungs, 94.7 ± 2.4% of the infused particles remained trapped within the lungs, compared to 86.8 ± 5.6% in negative pressure lungs ( P ≤ 0.05). Perfusate flows averaged 2.5 ± 0.1 mL/min in lungs ventilated with positive pressures, compared to 5.6 ± 01 mL/min in lungs ventilated with negative pressures ( P ≤ 0.05). Particle infusions had little effect on perfusate flows. In confocal images of dried sections of each lung, red and green particles were co-localized in clusters in positive pressure lungs, suggesting that acinar vessels that lacked particles were collapsed by these pressures thereby preventing perfusion through them. Particles were more broadly and uniformly distributed in negative pressure lungs, suggesting that perfusion in these lungs was also more uniformly distributed. Our results suggest that the acinar circulation is organized as a web, and further suggest that portions of this web are collapsed by positive pressure ventilation.


Sign in / Sign up

Export Citation Format

Share Document