Beneficial effects of the prone position on the incidence of barotrauma in oleic acid-induced lung injury under continuous positive pressure ventilation

1997 ◽  
Vol 41 (6) ◽  
pp. 701-707 ◽  
Author(s):  
H. L. Du ◽  
Y. YAMADA ◽  
R. ORII ◽  
S. SUZUKI ◽  
S. SAWAMURA ◽  
...  
1989 ◽  
Vol 67 (2) ◽  
pp. 817-823 ◽  
Author(s):  
J. I. Sznajder ◽  
C. J. Becker ◽  
G. P. Crawford ◽  
L. D. Wood

Constant-flow ventilation (CFV) maintains alveolar ventilation without tidal excursion in dogs with normal lungs, but this ventilatory mode requires high CFV and bronchoscopic guidance for effective subcarinal placement of two inflow catheters. We designed a circuit that combines CFV with continuous positive-pressure ventilation (CPPV; CFV-CPPV), which negates the need for bronchoscopic positioning of CFV cannula, and tested this system in seven dogs having oleic acid-induced pulmonary edema. Addition of positive end-expiratory pressure (PEEP, 10 cmH2O) reduced venous admixture from 44 +/- 17 to 10.4 +/- 5.4% and kept arterial CO2 tension (PaCO2) normal. With the innovative CFV-CPPV circuit at the same PEEP and respiratory rate (RR), we were able to reduce tidal volume (VT) from 437 +/- 28 to 184 +/- 18 ml (P less than 0.001) and elastic end-inspiratory pressures (PEI) from 25.6 +/- 4.6 to 17.7 +/- 2.8 cmH2O (P less than 0.001) without adverse effects on cardiac output or pulmonary exchange of O2 or CO2; indeed, PaCO2 remained at 35 +/- 4 Torr even though CFV was delivered above the carina and at lower (1.6 l.kg-1.min-1) flows than usually required to maintain eucapnia during CFV alone. At the same PEEP and RR, reduction of VT in the CPPV mode without CFV resulted in CO2 retention (PaCO2 59 +/- 8 Torr). We conclude that CFV-CPPV allows CFV to effectively mix alveolar and dead spaces by a small bulk flow bypassing the zone of increased resistance to gas mixing, thereby allowing reduction of the CFV rate, VT, and PEI for adequate gas exchange.


1996 ◽  
Vol 3 (3) ◽  
pp. 203-208
Author(s):  
Shun Satoh ◽  
Takashi Horinouchi ◽  
Atsushi Kaise ◽  
Shu Matsukawa ◽  
Yasuhiko Hashimoto ◽  
...  

1976 ◽  
Vol 40 (4) ◽  
pp. 568-574 ◽  
Author(s):  
P. C. Hopewell ◽  
J. F. Murray

We compared the effects of continuous positive-pressure ventilation (CPPV), using 10 cmH2O positive end-expiratory pressure (PEEP), with intermittent positive-pressure ventilation (IPPV), on pulmonary extravascular water volume (PEWV) and lung function in dogs with pulmonary edema caused by elevated left atrial pressure and decreased colloid osmotic pressure. The PEWV was measured by gravimetric and double-isotope indicator dilution methods. Animals with high (22–33 mmHg), moderately elevated (12–20 mmHg), and normal (3–11 mmHg) left atrial pressures (Pla) were studied. The PEWV by both methods was significantly increased in the high and moderate Pla groups, the former greater than the latter (P less than 0.05). There was no difference in the PEWV between animals receiving CPPV and those receiving IPPV in both the high and moderately elevated Pla groups. However, in animals with high Pla, the Pao2 was significantly better maintained and the inflation pressure required to deliver a tidal volume of 12 ml/kg was significantly less with the use of CPPV than with IPPV. We conclude that in pulmonary edema associated with high Pla, PEEP does not reduce PEWV but does improve pulmonary function.


Sign in / Sign up

Export Citation Format

Share Document