Long-term culture of rat hepatocytes on porous membranes in hormonally defined serum-free medium

1993 ◽  
Vol 7 (4) ◽  
pp. 453-459 ◽  
Author(s):  
C. Guery ◽  
J.P. Stepniewski ◽  
B. Vannier ◽  
R. Fournex ◽  
G. Lorenzon
Blood ◽  
1995 ◽  
Vol 86 (9) ◽  
pp. 3314-3321 ◽  
Author(s):  
L Ponchio ◽  
E Conneally ◽  
C Eaves

A method for quantitating the proportion of cycling long-term culture- initiating cells (LTC-IC) in heterogeneous populations of human hematopoietic cells is described. This procedure involves incubating the cells of interest for 16 to 24 hours in a serum-free medium containing 100 ng/mL Steel factor (SF), 20 ng/mL interleukin-3 (IL-3), and 20 ng/mL granulocyte-colony-stimulating factor (G-CSF), with or without 20 microCi/mL of high specific activity 3H-thymidine (3H-Tdr) before plating the recovered cells in standard LTC-IC assays. The details of this procedure are based in part on the finding that the number of LTC-IC (regardless of their cycling status) remains constant for at least 24 hours under these culture conditions, as long as 3H-Tdr is not present. In addition, we have determined that a 16-hour period of exposure to the 3H-Tdr is sufficient to maximize the discrimination of cycling LTC-IC but not long enough to allow a detectable redistribution of LTC-IC between noncycling and cycling compartments. Finally, any isotope reutilization that may occur is not sufficient to affect the LTC-IC 3H-Tdr suicide values measured. Application of this methodology to normally circulating LTC-IC showed these to be a primarily quiescent population. However, within 72 hours of incubation in a serum-free medium containing SF, IL-3, and G-CSF, most had entered S-phase, although there was no net change in their numbers. This suggests that, under certain conditions in vitro, self-renewal divisions of LTC-IC can occur and, at least initially, balance any losses of these cells due to their differentiation or death. In contrast, many of the LTC-IC in freshly aspirated samples of normal marrow were found to be proliferating, although those that were initially quiescent could also be recruited into S-phase within 72 hours in vitro when incubated under the same conditions used to stimulate circulating LTC-IC. This modified 3H-Tdr suicide procedure should facilitate further investigation of the mechanisms regulating the turnover of the most primitive compartments of human hematopoietic cells and how these may be altered in disease states or exploited for a variety of therapeutic applications.


2002 ◽  
Vol 22 (4) ◽  
pp. 263-273 ◽  
Author(s):  
A.R Caffé ◽  
P Ahuja ◽  
B Holmqvist ◽  
S Azadi ◽  
J Forsell ◽  
...  

1986 ◽  
Vol 64 (8) ◽  
pp. 803-810 ◽  
Author(s):  
M. O'Connor-McCourt ◽  
M. Soley ◽  
L. J. Hayden ◽  
M. D. Hollenberg

We have analyzed the receptors for epidermal growth factor (urogastrone) (EGF-URO) and insulin in primary cultures of adult rat hepatocytes maintained for up to 3 weeks on human placental cell matrix in serum-free defined medium. Cross-link labeling experiments revealed that the insulin receptor, partially damaged by the collagenase isolation procedure, was rapidly regenerated to yield an intact receptor. In contrast, cross-link labeling of the EGF-URO receptor revealed that, upon prolonged culture, there was a progressive disappearance of the high molecular mass (175 kilodaltons (kDa)) receptor form, and an appearance of low molecular mass receptor species (130 and 105 kDa). After 3 weeks of culture, the low molecular mass receptor forms accounted for all of the labeled EGF-URO receptor present in the cells. Measurements of EGF-URO binding indicated that the number of EGF-URO binding sites per cell (2.0 × 105 ± 0.3 × 105) did not change during the 3 weeks of culture. However, there was a decrease in EGF-URO binding affinity, reflected by an increase in the KD from 0.6 to 3.0 nM. At zero time and after 3 weeks in culture, Scatchard plots of the binding data were linear; at intermediate time points, the plots were curvilinear. Despite the changes in the EGF-URO receptor that occurred, cells were still responsive to EGF-URO in terms of the inhibition of acetate incorporation into lipid. The ED50 for EGF-URO (about 0.2 nM) was the same for short-term cultures (48 h) as for cells maintained in culture for 3 weeks. We conclude that the long-term culture of hepatocytes in serum-free medium yields an altered low molecular form of the EGF-URO receptor that is, nonetheless, functional. The study points to differential changes in receptors for peptide hormones that may occur in long-term hepatocyte cultures and illustrates the feasibility of using such cultures for metabolic studies of the actions of EGF-URO.


Sign in / Sign up

Export Citation Format

Share Document