Quality control practices in centralized tumor registries in North America

1990 ◽  
Vol 43 (11) ◽  
pp. 1201-1212 ◽  
Author(s):  
Susan Galloway Hilsenbeck
2018 ◽  
Vol 35 (1) ◽  
pp. 163-182 ◽  
Author(s):  
Etor E. Lucio-Eceiza ◽  
J. Fidel González-Rouco ◽  
Jorge Navarro ◽  
Hugo Beltrami

AbstractA quality control (QC) process has been developed and implemented on an observational database of surface wind speed and direction in northeastern North America. The database combines data from 526 land stations and buoys spread across eastern Canada and five adjacent northeastern U.S. states. It combines the observations of three different institutions spanning from 1953 to 2010. The quality of these initial data varies among source institutions. The current QC process is divided into two parts. Part I, described herein, is focused on issues related to data management: issues stemming from data transcription and collection; differences in measurement units and recording times; detection of sequences of duplicated data; unification of calm and true north criteria for wind direction; and detection of physically unrealistic data measurements. As a result, around ~0.1% of wind speed and wind direction records have been identified as erroneous and deleted. The most widespread error type is related to duplications within the same station, but the error type that entails more erroneous data belongs to duplications among different sites. Additionally, the process of data compilation and standardization has had an impact on more than 90% of the records. A companion paper (Part II) deals with a group of errors that are conceptually different, and is focused on detecting measurement errors that relate to temporal consistency and biases in wind speed and direction.


Medicina ◽  
2019 ◽  
Vol 55 (10) ◽  
pp. 636 ◽  
Author(s):  
Anthony Devlin ◽  
Courtney Mycroft-West ◽  
Patricia Procter ◽  
Lynsay Cooper ◽  
Scott Guimond ◽  
...  

Heparin is a vital pharmaceutical anticoagulant drug and remains one of the few naturally sourced pharmaceutical agents used clinically. Heparin possesses a structural order with up to four levels of complexity. These levels are subject to change based on the animal or even tissue sources that they are extracted from, while higher levels are believed to be entirely dynamic and a product of their surrounding environments, including bound proteins and associated cations. In 2008, heparin sources were subject to a major contamination with a deadly compound—an over-sulphated chondroitin sulphate polysaccharide—that resulted in excess of 100 deaths within North America alone. In consideration of this, an arsenal of methods to screen for heparin contamination have been applied, based primarily on the detection of over-sulphated chondroitin sulphate. The targeted nature of these screening methods, for this specific contaminant, may leave contamination by other entities poorly protected against, but novel approaches, including library-based chemometric analysis in concert with a variety of spectroscopic methods, could be of great importance in combating future, potential threats.


Metabolomics ◽  
2020 ◽  
Vol 16 (11) ◽  
Author(s):  
Rupasri Mandal ◽  
Raul Cano ◽  
Cindy D. Davis ◽  
David Hayashi ◽  
Scott A. Jackson ◽  
...  

Abstract Introduction To date, there has been little effort to develop standards for metabolome-based gut microbiome measurements despite the significant efforts toward standard development for DNA-based microbiome measurements. Objectives The National Institute of Standards and Technology (NIST), The BioCollective (TBC), and the North America Branch of the International Life Sciences Institute (ILSI North America) are collaborating to extend NIST’s efforts to develop a Human Whole Stool Reference Material for the purpose of method harmonization and eventual quality control. Methods The reference material will be rationally designed for adequate quality assurance and quality control (QA/QC) for underlying measurements in the study of the impact of diet and nutrition on functional aspects of the host gut microbiome and relationships of those functions to health. To identify which metabolites deserve priority in their value assignment, NIST, TBC, and ILSI North America jointly conducted a workshop on September 12, 2019 at the NIST campus in Gaithersburg, Maryland. The objective of the workshop was to identify metabolites for which evidence indicates relevance to health and disease and to decide on the appropriate course of action to develop a fit-for-purpose reference material. Results This document represents the consensus opinions of workshop participants and co-authors of this manuscript, and provides additional supporting information. In addition to developing general criteria for metabolite selection and a preliminary list of proposed metabolites, this paper describes some of the strengths and limitations of this initiative given the current state of microbiome research. Conclusions Given the rapidly evolving nature of gut microbiome science and the current state of knowledge, an RM (as opposed to a CRM) measured for multiple metabolites is appropriate at this stage. As the science evolves, the RM can evolve to match the needs of the research community. Ultimately, the stool RM may exist in sequential versions. Beneficial to this evolution will be a clear line of communication between NIST and the stakeholder community to ensure alignment with current scientific understanding and community needs.


2001 ◽  
Vol 11 (1) ◽  
pp. 79-85 ◽  
Author(s):  
Thomas S.C. Li

Siberian ginseng [Eleutherococcus senticosus (Rupr. ex. Maxim.) Maxim] is currently a popular medicinal plant in Eurasia and North America. It has been used by the Chinese for over 2000 years. Recently, imported products of this plant have become available in North America, with a market share of 3.1% of the medicinal herbal industry. Siberian ginseng is harvested from its natural habitat in Russia and northeast China. Overharvesting has resulted in this popular herb approaching endangered species status. Cultivation is the only way to avoid its extinction, and to ensure the correct identity. Siberian ginseng is not a true ginseng (Panax quinquefolium L. or P. ginseng C.A. Meyer), but it has its own bioactive ingredients with unique and proven medicinal values. However, standardization and quality control of the active ingredients in the marketed products, which are mainly imported from China, are needed to avoid mislabeling or adulteration with other herbs.


Sign in / Sign up

Export Citation Format

Share Document