Subsurface temperature—depth profiles, anomalies due to climatic ground surface temperature changes or groundwater flow effects

1994 ◽  
Vol 9 (3-4) ◽  
pp. 221-232 ◽  
Author(s):  
I.T. Kukkonen ◽  
V. Čermák ◽  
J. Šafanda
2007 ◽  
Vol 3 (1) ◽  
pp. 121-163 ◽  
Author(s):  
C. Chouinard ◽  
J.-C. Mareschal

Abstract. Borehole temperature depth profiles are commonly used to infer time variations in the ground surface temperature on centennial time scales. We compare different procedures to obtain a regional ground surface temperature history (GSTH) from an ensemble of borehole temperature depth profiles. We address in particular the question of selecting profiles that are not contaminated by non climatic surface perturbations and we compare the joint inversion of all the profiles with the average of individual inversions. We show that the resolution and the stability of the inversion of selected profiles are much improved over those for a complete data set. When profiles have been selected, the average GSTH of individual inversions and the GSTH of the joint inversion are almost identical. This is not observed when the entire data set is inverted: the average of individual inversions is different from the joint inversion. We also show that the joint inversion of very noisy data sets does not improve the resolution but, on the contrary, causes strong instabilities in the inversion. When the profiles that are affected by noise can not be eliminated, averaging of the individual inversions yields the most stable result, but with very poor resolution.


2007 ◽  
Vol 3 (2) ◽  
pp. 297-313 ◽  
Author(s):  
C. Chouinard ◽  
J.-C. Mareschal

Abstract. Borehole temperature depth profiles are commonly used to infer time variations in the ground surface temperature on centennial time scales. We compare different procedures to obtain a regional ground surface temperature history (GSTH) from an ensemble of borehole temperature depth profiles. We address in particular the question of selecting profiles that are not contaminated by non climatic surface perturbations and we compare the joint inversion of all the profiles with the average of individual inversions. Very few profiles of the Canadian data set meet the selection criteria (e.g. only 13 out of 73 profiles in Manitoba and Saskatchewan were retained). We show that the resolution and the stability of the inversion of selected profiles are much improved over those for a complete data set. When profiles have been selected, the average GSTH of individual inversions and the GSTH of the joint inversion are almost identical. This is not observed when the entire data set is inverted: the average of individual inversions is different from the joint inversion. We also show that the joint inversion of very noisy data sets does not improve the resolution but, on the contrary, causes strong instabilities in the inversion. When the profiles that are affected by noise can not be eliminated, averaging of the individual inversions yields the most stable result, but with very poor resolution.


Geofluids ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-14 ◽  
Author(s):  
Linyao Dong ◽  
Congsheng Fu ◽  
Jigen Liu ◽  
Yifeng Wang

Subsurface temperatures depend on climate and groundwater flow. A lack of observations of subsurface temperature collected over decades limits interpretation of the combined influences of surface warming and groundwater flow on subsurface thermal regimes. Subsurface temperature-depth profile data acquired for Kumamoto Plain, Japan, between 1987 and 2012 were collected and analyzed to elucidate regional groundwater and heat flows. The observed and simulated temperature-depth profiles showed the following: subsurface water flows from northeast to southwest in the study area; the combined influence of surface warming and water flow perturbation produces different temporal changes in thermal profiles in recharge, intermediate, and discharge areas; and aquifer thermal properties contribute more than hydraulic parameters to the perturbation of temperature-depth profiles. Spatial and temporal evolution features of subsurface thermal regimes may be utilized to investigate the influence of surface warming events on subsurface water and heat flows at the basin scale.


Sign in / Sign up

Export Citation Format

Share Document