Influence of storage period and temperature on the postharvest characteristics of six melon (Cucumis melo L., Inodorus Group) cultivars

1995 ◽  
Vol 5 (3) ◽  
pp. 211-219 ◽  
Author(s):  
Vito Miccolis ◽  
Mikal E Saltveit
1990 ◽  
Vol 30 (5) ◽  
pp. 693 ◽  
Author(s):  
ME Edwards ◽  
RM Blennerhassett

Three trials were undertaken to study storage conditions and handling procedures required to maximise the postharvest storage life of honeydew melons (Cucumis melo L. var. inodorus Naud.).Honeydew melons treated with chlorine (1000 mg/L), benomyl (250 mg/L) + guazatine (500 mg/L), shrink wrap (17 ym Cryovac XDR film), Semperfresh, wax, or combinations of these treatments were stored at 4 or 8�C, for 4 or 6 weeks. Benomyl plus guazatine reduced the development of storage rots associated with Alternaria and Fusarium spp. The use of shrink wrap and wax reduced water loss by melons but increased fungal infection in some cases. Shrink wrapping combined with the fungicide treatment effectively reduced the incidence of fungal breakdown in the storage period for up to 4 weeks. Wax coating with full strength Citruseal wax caused anaerobic tissue breakdown. Melons were affected by chilling injury at 4�C. Control of bacterial rots with benomyl + guazatine or with chlorine was variable. Semperfresh did not reduce the incidence of fungal breakdown or water loss from the melons. The results indicate that storage of honeydew melons for 4 weeks at 8�C by pretreating with fungicide is possible but the melons soften and rot after 6 weeks, making them unsaleable. Four weeks should be adequate to allow for sea freighting of honeydew melons to markets in South East Asia. Further research is required to determine the optimum storage temperature for honeydew melons.


2009 ◽  
Vol 52 (4) ◽  
pp. 200-204 ◽  
Author(s):  
Jun-Gu Cho ◽  
Sun-Joo Youn ◽  
Eun-Tag Lee ◽  
Tae-Wan Kim ◽  
Dae-Jun Kwoen

2020 ◽  
Vol 21 (7) ◽  
Author(s):  
WIKO ARIF WIBOWO ◽  
MUHAMMAD IMAM FATKHUROHMAN ◽  
BUDI SETIADI DARYONO

Abstract. Wibowo WA, Fatkhurohman MI, Daryono BS. 2020. Characterization and expression of Cm-AAT1 gene encoding alcohol acyl-transferase in melon fruit (Cucumis melo L.) ‘Hikapel’. Biodiversitas 21: 3041-3046. Melon (Cucumis melo L.) is one of the horticulture commodities that have high economic value and its needs increase continuously. Many new melon cultivars have been assembled to produce a higher quality melon. Melon 'Hikapel' developed by the Laboratory of Genetics and Breeding, Faculty of Biology UGM has distinctive character in the form of a strong aroma. This aroma is a complex mixture of various kinds of volatile compound. One of the main determinant compounds is a volatile ester, synthesized by the alcohol acyl-transferase enzyme encoded by the Cm-AAT1 gene. Characterization of Cm-AAT1 began with isolation of melon rinds to get total RNAs. Synthesis cDNA was conducted with oligo-dT primer, followed by detection of Cm-AAT1 using specific primers. A specific band was sequenced to perform phylogenetic tree. Gene expression from 4 melon cultivars, ‘Hikapel’, ‘Hikadi’, ‘Sun Lady’, and ‘Luna’ analysis was performed using relative quantitative Real-Time PCR. The results of this study showed that Cm-AAT1 owned not only by aromatic cultivars ‘Hikapel’ and ‘Hikadi’, but also owned by non-aromatic cultivars ‘Sun Lady’ and ‘Luna’. Phylogenetic analysis shows a high similarity between Cm-AAT1 on 'Hikapel' and 'Hikadi'. Gene expression analysis on 'Hikapel' increases as the process of fruit ripening during the storage period and it is in contrast to 'Hikadi' at decrease when the fruit began to enter the decay process on day 7th. Expression of Cm-AAT1 on ‘Hikapel’ was higher than ‘Hikadi’ at the peak of fruit maturity.


Author(s):  
César Elías Baquero Maestre ◽  
Ángela Arcila Cardona ◽  
Heriberto Arias Bonilla ◽  
Marlon Yacomelo Hernández
Keyword(s):  

ChemInform ◽  
2011 ◽  
Vol 42 (8) ◽  
pp. no-no
Author(s):  
Gene E. Lester ◽  
John L. Jifon ◽  
Donald J. Makus

Sign in / Sign up

Export Citation Format

Share Document