Geometrical optics, point-to-point raytracing and amplitudes in a two-dimensional, isotropic, seismic model with a piecewise constant velocity gradient

1992 ◽  
Vol 29 (1) ◽  
pp. 67-68
Author(s):  
Peder Hedebol Nielsen

(1) It is not so long ago that it was generally believed that the "classical" hydrodynamics, as dealing with perfect fluids, was, by reason of the very limitations implied in the term "perfect," incapable of explaining many of the observed facts of fluid motion. The paradox of d'Alembert, that a solid moving through a liquid with constant velocity experienced no resultant force, was in direct contradiction with the observed facts, and, among other things, made the lift on an aeroplane wing as difficult to explain as the drag. The work of Lanchester and Prandtl, however, showed that lift could be explained if there was "circulation" round the aerofoil. Of course, in a truly perfect fluid, this circulation could not be produced—it does need viscosity to originate it—but once produced, the lift follows from the theory appropriate to perfect fluids. It has thus been found possible to explain and calculate lift by means of the classical theory, viscosity only playing a significant part in the close neighbourhood ("grenzchicht") of the solid. It is proposed to show, in the present paper, how the presence of vortices in the fluid may cause a force to act on the solid, with a component in the line of motion, and so, at least partially, explain drag. It has long been realised that a body moving through a fluid sets up a train of eddies. The formation of these needs a supply of energy, ultimately dissipated by viscosity, which qualitatively explains the resistance experienced by the solid. It will be shown that the effect of these eddies is not confined to the moment of their birth, but that, so long as they exist, the resultant of the pressure on the solid does not vanish. This idea is not absolutely new; it appears in a recent paper by W. Müller. Müller uses some results due to M. Lagally, who calculates the resultant force on an immersed solid for a general fluid motion. The result, as far as it concerns vortices, contains their velocities relative to the solid. Despite this, the term — ½ ρq 2 only was used in the pressure equation, although the other term, ρ ∂Φ / ∂t , must exist on account of the motion. (There is, by Lagally's formulæ, no force without relative motion.) The analysis in the present paper was undertaken partly to supply this omission and partly to check the result of some work upon two-dimensional potential problems in general that it is hoped to publish shortly.


2018 ◽  
Vol 2018 ◽  
pp. 1-5 ◽  
Author(s):  
Qilin Zeng ◽  
Jiaxin Liu ◽  
Weiming Xiong

In the dynamic point-to-point communication, to track and aim at antenna fast and accurately is the guarantee of high quality communication signal. In order to solve the problem of antenna alignment, we used the least square method (LSM) to fit the optimal level signal value (LSV) point which is based on coordinate coarse tracking alignment and matrix scanning strategy to find the LSV in this paper. Antenna is driven by two-dimensional turntable (azimuth and elevation angle (AE)): the two-dimensional turntable is decomposed into two independent one-dimensional turntables, and the LSV in AE direction are obtained by scanning, respectively. The optimal LSV point of two-dimensional turntable can be find by combing optimal LSV point of two independent one-dimensional turntables. The method has the advantages of high precision and easy implementation and can meet the requirement of fast and accurately alignment in dynamic point-to-point communication antenna engineering.


2007 ◽  
Vol 17 (04) ◽  
pp. 593-615 ◽  
Author(s):  
J. ELSCHNER ◽  
H.-C. KAISER ◽  
J. REHBERG ◽  
G. SCHMIDT

Let ϒ be a three-dimensional Lipschitz polyhedron, and assume that the matrix function μ is piecewise constant on a polyhedral partition of ϒ. Based on regularity results for solutions to two-dimensional anisotropic transmission problems near corner points we obtain conditions on μ and the intersection angles between interfaces and ∂ϒ ensuring that the operator -∇ · μ∇ maps the Sobolev space [Formula: see text] isomorphically onto W-1,q(ϒ) for some q > 3.


2009 ◽  
Vol 58 (3) ◽  
pp. 515-523 ◽  
Author(s):  
Andrzej Okniński ◽  
Bogusław Radziszewski

2018 ◽  
Vol 186 ◽  
pp. 01002
Author(s):  
Divakov Dmitriy ◽  
Malykh Mikhail ◽  
Tiutiunnik Anastasiia

The article describes the relationship between the solutions of Maxwell's equations which can be considered at least locally as plane waves and the curvilinear coordinates of geometrical optics. We introduce phase-ray coordinate system for any electromagnetic field if vectors E and H are orthogonal to each other and their directions do not change with time t, but may vary from point to point in the domain G.


1950 ◽  
Vol 2 (2) ◽  
pp. 127-142 ◽  
Author(s):  
N.H. Johannesen ◽  
R.E. Meyer

SummaryWhen a uniform, two-dimensional supersonic flow expands suddenly round a corner in a wall it forms a pattern known as a Prandtl-Meyer expansion or centred simple wave. If the flow is two-dimensional but not initially uniform, or if it is axially-symmetrical, the expansion is still centred, but is not a simple wave. An approximate solution is given in this paper for the isentropic, irrotational, steady two-dimensional or axially-symmetrical flow of a perfect gas in the neighbourhood of the centre of such an expansion. The solution is designed to replace the conventional method of characteristics in such a region.The main application is to a jet issuing from a nozzle that discharges into a container with a pressure lower than that in the nozzle; in particular, a formula is derived for the initial curvature, at the lip of the nozzle, of the boundary of the jet. The solution also applies to the flow near an edge in a boundary wall, and a formula is derived for the velocity gradient on the wall immediately downstream of the edge.


Geophysics ◽  
1993 ◽  
Vol 58 (2) ◽  
pp. 293-297
Author(s):  
Shelby C. Worley

The two‐dimensional (2-D) reflection path from a dipping plane between an offset source‐receiver combination in a constant velocity medium can be described with several parameters (coordinates, offsets, angles, and lengths). Although there are many parameters, only four independent ones are needed to locally determine the reflection geometry. Given four determining parameters, the evaluations of other ones present problems that range from trivial to formidable. The circumscribed circle about the source, receiver, and specular point turns out to have a number of remarkable properties that are useful for the solution of these problems. The radius of the circle is a useful new auxiliary parameter. Triangles constructed in the circle provide nonintuitive mathematical relationships between angles and lengths. The use of mathematical relations derived from the circle has allowed the creation of formulas to fully recover the reflection geometry in a vast majority of valid sets of four known parameters. This circle provides a powerful tool for the calculation of nondetermining parameters as well as new insight into the geometry of reflection with straight raypaths.


Author(s):  
DANIELA ROŞCA

We construct piecewise constant wavelets on a bounded planar triangulation, the refinement process consisting of dividing each triangle into three triangles having the same area. Thus, the wavelets depend on two parameters linked by a certain relation. We perform a compression and try to compare different norms of the compression error, when one wavelet coefficient is canceled. Finally, we show how this construction can be moved on to the two-dimensional sphere and sphere-like surfaces, avoiding the distortions around the poles, which occur in other approaches. As numerical example, we perform a compression of some spherical data and calculate some norms of the compression error for different compression rates. The main advantage is the orthogonality and sparsity of the decomposition and reconstruction matrices.


Sign in / Sign up

Export Citation Format

Share Document