An algorithm for piecewise-constant velocity estimation and application to particle trajectories in microscopy

Author(s):  
Nicolas Chenouard ◽  
Richard W. Tsien
2009 ◽  
Vol 58 (3) ◽  
pp. 515-523 ◽  
Author(s):  
Andrzej Okniński ◽  
Bogusław Radziszewski

2002 ◽  
Vol 87 (2) ◽  
pp. 1159-1164 ◽  
Author(s):  
J. Eric Killian ◽  
James F. Baker

The horizontal vestibuloocular reflex (VOR) of Purkinje cell degeneration ( pcd/pcd) mutant mice, which lack a functional cerebellar cortex, was compared in darkness to that of wild-type animals during constant velocity yaw rotations about an earth-horizontal axis and during sinusoidal yaw rotations about an earth-vertical axis. Both wild-type and pcd/pcd mice showed a compensatory average VOR eye velocity, or bias, during constant velocity horizontal axis rotations, evidence of central neural processing of otolith afferent signals to create a signal proportional to head angular velocity. Eye velocity bias was greater in pcd/pcd mice than in wild-type mice at a low rotational velocity (32°/s), but less at higher velocities (128 and 200°/s). Lesion of the medial nodulus severely attenuated eye velocity bias in two wild-type mice, without attenuating VOR during sinusoidal vertical axis yaw rotations at 0.2 Hz. These results show that while head velocity estimation in mice, as in primates, depends on the cerebellum, pcd/pcd mutant mice develop velocity estimation without a functional cerebellar cortex. We conclude that neural circuits that exclude cerebellar cortex are capable of the signal processing necessary for head angular velocity estimation, but that these circuits are insufficient for normal estimation at high velocities.


2020 ◽  
Author(s):  
Richard Delf ◽  
Robert G Bingham ◽  
Andrew Curtis ◽  
Satyan Singh ◽  
Benjamin Schwarz ◽  
...  

<p>Ground Penetrating Radar (GPR) is widely used on polythermal and temperate glaciers to sound bed topography and investigate the hydrothermal conditions through detection of englacial radar scattering. Water held within micro- and macro-scale pores and ice grain boundaries in ice at the pressure melting point influences the velocity of radar propagation on the scale of the wavelength, and can result in the occurrence of pronounced diffraction patterns in the data. Methods to investigate the water content distribution quantitatively within temperate ice often require the use of multi-offset common mid-point or common source-point survey techniques, which are logistically challenging and expensive. As a result, bed topography estimation is often undertaken using a constant velocity, and, because lateral variations in the the velocity field are unaccounted for, errors in topography are likely.</p><p>Here, we present an automated workflow to estimate an englacial radar velocity field from zero offset data and apply the algorithm to GPR data collected on Von Postbreen, a polythermal glacier in Svalbard, using a 25 MHz zero-offset GPR system. We first extract the diffracted wavefield using local coherent stacking to remove scatter and enhance diffractions. We then use the focusing metric of negative entropy to deduce a local migration velocity field from constant-velocity migration panels and produce a glacier-wide model of local (interval) radar velocity. We show that this velocity field is successful in differentiating between areas of cold and temperate ice and can detect lateral variations in radar velocity close to the glacier bed. The effects of this velocity field in both migration and depth-conversion of the bed reflection are shown to result in consistently lower ice depths across the glacier, indicating that diffraction focusing and velocity estimation are crucial in retrieving correct bed topography in the presence of temperate ice.</p>


Author(s):  
M.D. Coutts ◽  
E.R. Levin ◽  
J.G. Woodward

While record grooves have been studied by transmission electron microscopy with replica techniques, and by optical microscopy, the former are cumbersome and restricted and the latter limited by lack of depth of focus and resolution at higher magnification. With its great depth of focus and ease in specimen manipulation, the scanning electron microscope is admirably suited for record wear studies.A special RCA sweep frequency test record was used with both lateral and vertical modulation bands. The signal is a repetitive, constant-velocity sweep from 2 to 20 kHz having a duration and repetitive rate of approximately 0.1 sec. and a peak velocity of 5.5 cm/s.A series of different pickups and numbers of plays were used on vinyl records. One centimeter discs were then cut out, mounted and coated with 200 Å of gold to prevent charging during examination. Wear studies were made by taking micrographs of record grooves having 1, 10 and 50 plays with each stylus and comparing with typical “no-play” grooves. Fig. 1 shows unplayed grooves in a vinyl pressing with sweep-frequency modulation in the lateral mode.


Sign in / Sign up

Export Citation Format

Share Document