Appendix: Safety format of Eurocode 5 for ultimate limit states

1992 ◽  
Vol 6 (3) ◽  
pp. 150-151
Keyword(s):  
2018 ◽  
Vol 15 (1) ◽  
pp. 59
Author(s):  
NAZRUL AZMI AHMAD ZAMRI ◽  
CLOTILDA PETRUS ◽  
AZMI IBRAHIM ◽  
HANIZAH AB HAMID

The application of concrete filled steel tubes (CFSTs) as composite members has widely been used around the world and is becoming popular day by day for structural application especially in earthquake regions. This paper indicates that an experimental study was conducted to comprehend the behaviour of T-stub end plates connected to concrete filled thin-walled steel tube (CFTST) with different types of bolts and are subjected to pullout load. The bolts used are normal type bolt M20 grade 8.8 and Lindapter Hollo-bolt HB16 and HB20. A series of 10 mm thick T-stub end plates were fastened to 2 mm CFTST of 200 mm x 200 mm in cross-section. All of the specimens were subjected to monotonic pull-out load until failure. Based on test results, the Lidapter Hollo-bolts showed better performance compare to normal bolts. The highest ultimate limit load for T-stub end plate fasten with Lindapter Hollo-bolt is four times higher than with normal bolt although all end plates show similar behaviour and failure mode patterns. It can be concluded that T-stub end plate with Lindapter Hollo-bolt shows a better performance in the service limit and ultimate limit states according to the regulations in the design codes.


2013 ◽  
Vol 12 (2) ◽  
pp. 047-054 ◽  
Author(s):  
Piotr Olaszek ◽  
Juliusz Cieśla ◽  
Waldemar Szaniec

In the report some investigations of bridge structure, connected with the adaptation of the railway line to speeds up to 200 km/h for conventional trains and up to 250 km/h for tilting trains were presented. A railway track is the characteristic feature of tested viaduct, because the truck is curved over the whole length of span with radius of R = 2600 m. The tests of the viaduct required the verification of influence of the dynamic effects on the ultimate limit states which corresponded to the safety of structure, as well as the serviceability limit states, related to the safety of driving and the travellers’ comfort. In frames of investigations, a special train comprised of two locomotives and four passenger cars, was used with speeds in the range between 10 and 200 km/h. The report focuses on the problems addressing the influence of horizontal actions in the case of bridge with curved truck. The measurements of the horizontal and vertical displacements as well as the accelerations of span, and the speed of crossing test train were executed. The measured and theoretically calculated chosen courses of displacements and accelerations were introduced. The degree of divergence between measured and calculated values was analysed.


Author(s):  
Dionysios Bournas ◽  
Andrea Prota ◽  
Souzana Tastani ◽  
Georgia Thermou ◽  
Thanasis Triantafillou

1996 ◽  
Vol 12 (1) ◽  
pp. 129-143 ◽  
Author(s):  
Richard A. Behr ◽  
Abdeldjelil Belarbi

An ongoing effort is being made at the University of Missouri-Rolla to develop standard laboratory test methods and codified design procedures for architectural glass under seismic loadings. Recent laboratory work has yielded some promising results regarding the development of an appropriate seismic test method for architectural glass, as well as identifying ultimate limit states that quantify the seismic performance and damage thresholds of various glass types. Specifically, a straightforward “crescendo-like” in-plane dynamic racking test, performed at a constant frequency, has been employed successfully. Two ultimate limit states for architectural glass have been defined: (1) a lower ultimate limit state corresponding to major glass crack pattern formation; and (2) an upper limit state corresponding to significant glass fallout. Early crescendo tests have yielded distinct and repeatable ultimate limit state data for various storefront glass types tested under dynamic racking motions. Crescendo tests will also be used to identify and quantify serviceability limit states for architectural glass and associated glazing components under dynamic loadings. These limit state data will support the development of rational design procedures for architectural glass under seismic loadings.


Author(s):  
James P. Doherty ◽  
Barry M. Lehane

This paper describes an automated algorithm for determining the length and diameter of monopile foundations subject to lateral loads with the aim of minimising the pile weight, whilst satisfying both ultimate and serviceability limit states. The algorithm works by wrapping an optimisation routine around a finite element p - y model for laterally loaded piles. The objective function is expressed as a function representing the pile volume, while the ultimate limit state and serviceability limit states are expressed as optimisation constraints. The approach was found to be accurate and near instantaneous when compared to manual design procedures and may improve design outcomes and reduce design time and costs.


Sign in / Sign up

Export Citation Format

Share Document