Issues in the control of fiber-matrix interface properties in ceramic composites

1994 ◽  
Vol 31 (8) ◽  
pp. 1079-1084 ◽  
Author(s):  
Ronald J. Kerans
1986 ◽  
Vol 78 ◽  
Author(s):  
D. B. Narshall

ABSTRACTResults of recent micromechanics analyses of the reinforcing influence of frictionally bonded fibers in ceramic composites are summnarized. Direct measurements of the fiber/matrix interface properties are also discussed.


1990 ◽  
Vol 194 ◽  
Author(s):  
Ronald J. Kerans ◽  
Paul D. Jero ◽  
Triplicane A. Parthasarathy ◽  
Amit Chatterjee

AbstractIt has been evident for some time that the mechanical properties of the fiber/matrix interface play an important role in determining the mechanical behavior of ceramic composites (for reviews, see [1], [2], and [3[). Recently there has been a growing interest in the role of the fiber/matrix interface in intermetallic matrix composites. While ceramic and intermetallic composites are certainly very different materials, understanding the behavior of one will provide insight into the other. Furthermore, the basic issues regarding the determination of interface properties are the same. The accuracy of micromechanics models of any composite system is dependent upon the accuracy of all the constituent and interface properties. It is far preferable to measure actual materials constants rather than test-specific quantities. The tests described here are intended to measure the interfacial shear strength (or mode II toughness) and the interfacial tensile strength. The objective of this work is to briefly outline a few of the approaches which are being evaluated for and applied to ceramic composites, and which may be of interest to investigators working in intermetallic composites.


2020 ◽  
Vol 90 (23-24) ◽  
pp. 2806-2817
Author(s):  
Juanzi Li ◽  
Wei Fan ◽  
Tao Liu ◽  
Linjia Yuan ◽  
Lili Xue ◽  
...  

Recent increases in the use of carbon fiber reinforced plastics, especially for high-temperature applications, has induced new challenges in evaluating their mechanical properties. The effects of temperature on the shear performance of 3-dimensional orthogonal and 2-dimensional plain woven composites were compared in this study through double-notch shear tests. A scanning electron microscope was employed to investigate the fiber/matrix interface properties to reveal the failure characteristics. The results showed that temperature had a visible impact on the inter-laminar shear strength (ILSS), deformation modes, and failure mechanism. The ILSS decreased as temperature increased, which was caused by the degradation of the matrix properties and fiber/matrix interface properties at high temperature. A finite element model was established to analyze the transient deformation process and the damage mechanism of the 3D orthogonal woven composite. This indicated that Z-binder yarns could improve the delamination resistance of 3D orthogonal woven composites, especially under high temperatures. The changes in failure modes of the 3D orthogonal woven composites was put down to thermal softening of the epoxy resin caused by high temperature and the undulation of the yarns.


2020 ◽  
Vol 2020 ◽  
pp. 1-17
Author(s):  
Longbiao Li

In this paper, the effect of the fiber/matrix interface properties on the tensile and fatigue behavior of 2D woven SiC/SiC ceramic-matrix composites (CMCs) is investigated. The relationships between the interface parameters of the fiber/matrix interface debonding energy and interface frictional shear stress in the interface debonding region and the composite tensile and fatigue damage parameters of first matrix cracking stress, matrix cracking density, and fatigue hysteresis-based damage parameters are established. The effects of the fiber/matrix interface properties on the first matrix cracking stress, matrix cracking evolution, first and complete interface debonding stress, fatigue hysteresis dissipated energy, hysteresis modulus, and hysteresis width are analyzed. The experimental first matrix cracking stress, matrix cracking evolution, and fatigue hysteresis loops of SiC/SiC composites are predicted using different interface properties.


Sign in / Sign up

Export Citation Format

Share Document