scholarly journals Transverse failure of carbon fiber composites: Analytical sensitivity to the distribution of fiber/matrix interface properties

2019 ◽  
Vol 120 (5) ◽  
pp. 650-665 ◽  
Author(s):  
Maryam Shakiba ◽  
David R. Brandyberry ◽  
Scott Zacek ◽  
Philippe H. Geubelle
2020 ◽  
Vol 39 (9-10) ◽  
pp. 345-360
Author(s):  
Baris Sabuncuoglu ◽  
Onur Cakmakci ◽  
Fevzi S Kadioglu

Distribution of stresses in fiber/matrix interface in UD flax fiber reinforced composites is investigated under transverse loading and compared with conventional synthetic fibers. Micro-scale finite element models with representative volume elements are generated with various fiber packing types and fiber volume ratios. The study is performed for various strain values, which take into account the material nonlinearity of matrix. The results show that significantly lower stress concentrations exist in the case of flax fibers compared to glass fiber composites, explaining the absence of transverse cracks until failure in previously conducted transverse tension tests. Increase in the applied transverse strain causes a further decrease in the stress concentrations due to the nonlinear behavior of the matrix.


Carbon ◽  
1990 ◽  
Vol 28 (1) ◽  
pp. 21-26 ◽  
Author(s):  
Youichi Nakayama ◽  
Fusami Soeda ◽  
Akira Ishitani

1988 ◽  
Vol 110 (2) ◽  
pp. 89-95 ◽  
Author(s):  
Tetsuyuki Kyono ◽  
Etsuro Kuroda ◽  
Atsushi Kitamura ◽  
Tsutomu Mori ◽  
Minoru Taya

Effects of thermal cycling on mechanical properties such as longitudinal tensile strength, interlaminar shear strength and work of fracture of carbon fiber/aluminum composites have been investigated. The composite specimens fabricated by a squeeze casting technique were thermally cycled in fluidized baths between room temperature and various temperatures (250, 300, and 350° C) for up to 1000 cycles. The cross sections and fracture surfaces were examined to clarify the degradation mechanism. Significant degradation of the mechanical properties by thermal cycling was observed in untreated carbon fiber/aluminum composites whereas much less degradation in surface treated carbon fiber/aluminum composites. Microscopic observations and short beam shear tests have indicated that the degradation of mechanical properties is caused by debonding at the fiber/matrix interface. The fiber/matrix interface for surface treated fiber was more resistant to debonding. It is concluded that thermal cycling damage of carbon fiber/aluminum composites can be minimized by increasing their fiber/matrix bond strengths.


Sign in / Sign up

Export Citation Format

Share Document