Amino acid sequence similarity between CL100, a dual-specificity MAP kinase phosphatase and cdc25

1993 ◽  
Vol 18 (10) ◽  
pp. 377-378 ◽  
Author(s):  
Stephen M. Keyse ◽  
Michelle Ginsburg
Plant Disease ◽  
2004 ◽  
Vol 88 (5) ◽  
pp. 516-522 ◽  
Author(s):  
Gustavo Fermin ◽  
Valentina Inglessis ◽  
Cesar Garboza ◽  
Sairo Rangel ◽  
Manuel Dagert ◽  
...  

Local varieties of papaya grown in the Andean foothills of Mérida, Venezuela, were transformed independently with the coat protein (CP) gene from two different geographical Papaya ringspot virus (PRSV) isolates, designated VE and LA, via Agrobacterium tumefaciens. The CP genes of both PRSV isolates show 92 and 96% nucleotide and amino acid sequence similarity, respectively. Four PRSV-resistant R0 plants were intercrossed or selfed, and the progenies were tested for resistance against the homologous isolates VE and LA, and the heterologous isolates HA (Hawaii) and TH (Thailand) in greenhouse conditions. Resistance was affected by sequence similarity between the transgenes and the challenge viruses: resistance values were higher for plants challenged with the homologous isolates (92 to 100% similarity) than with the Hawaiian (94% similarity) and, lastly, Thailand isolates (88 to 89% similarity). Our results show that PRSV CP gene effectively protects local varieties of papaya against homologous and heterologous isolates of PRSV.


2001 ◽  
Vol 353 (3) ◽  
pp. 635-644 ◽  
Author(s):  
Hidekazu KUWAYAMA ◽  
Helena SNIPPE ◽  
Mari DERKS ◽  
Jeroen ROELOFS ◽  
Peter J. M. VAN HAASTERT

In Dictyostelium cAMP and cGMP have important functions as first and second messengers in chemotaxis and development. Two cyclic-nucleotide phosphodiesterases (DdPDE 1 and 2) have been identified previously, an extracellular dual-specificity enzyme and an intracellular cAMP-specific enzyme (encoded by the psdA and regA genes respectively). Biochemical data suggest the presence of at least one cGMP-specific phosphodiesterase (PDE) that is activated by cGMP. Using bioinformatics we identified a partial sequence in the Dictyostelium expressed sequence tag database that shows a high degree of amino acid sequence identity with mammalian PDE catalytic domains (DdPDE3). The deduced amino acid sequence of a full-length DdPDE3 cDNA isolated in this study predicts a 60kDa protein with a 300-residue C-terminal PDE catalytic domain, which is preceded by approx. 200 residues rich in asparagine and glutamine residues. Expression of the DdPDE3 catalytic domain in Escherichia coli shows that the enzyme has Michaelis–Menten kinetics and a higher affinity for cGMP (Km = 0.22µM) than for cAMP (Km = 145µM); cGMP does not stimulate enzyme activity. The enzyme requires bivalent cations for activity; Mn2+ is preferred to Mg2+, whereas Ca2+ yields no activity. DdPDE3 is inhibited by 3-isobutyl-1-methylxanthine with an IC50 of approx. 60µM. Overexpression of the DdPDE3 catalytic domain in Dictyostelium confirms these kinetic properties without indications of its activation by cGMP. The properties of DdPDE3 resemble those of mammalian PDE9, which also shows the highest sequence similarity within the catalytic domains. DdPDE3 is the first cGMP-selective PDE identified in lower eukaryotes.


2000 ◽  
Vol 74 (16) ◽  
pp. 7298-7306 ◽  
Author(s):  
Sherry Neff ◽  
Peter W. Mason ◽  
Barry Baxt

ABSTRACT We have previously reported that Foot-and-mouth disease virus (FMDV), which is virulent for cattle and swine, can utilize the integrin αvβ3 as a receptor on cultured cells. Since those studies were performed with the human integrin, we have molecularly cloned the bovine homolog of the integrin αvβ3 and have compared the two receptors for utilization by FMDV. Both the αv and β3subunits of the bovine integrin have high degrees of amino acid sequence similarity to their corresponding human subunits in the ectodomains (96%) and essentially identical transmembrane and cytoplasmic domains. Within the putative ligand-binding domains, the bovine and human αv subunits have a 98.8% amino acid sequence similarity while there is only a 93% similarity between the β3 subunits of these two species. COS cell cultures, which are not susceptible to FMDV infection, become susceptible if cotransfected with αv and β3 subunit cDNAs from a bovine or human source. Cultures cotransfected with the bovine αvβ3 subunit cDNAs and infected with FMDV synthesize greater amounts of viral proteins than do infected cultures cotransfected with the human integrin subunits. Cells cotransfected with a bovine αv subunit and a human β3subunit synthesize viral proteins at levels equivalent to those in cells expressing both human subunits. However, cells cotransfected with the human αv and the bovine β3 subunits synthesize amounts of viral proteins equivalent to those in cells expressing both bovine subunits, indicating that the bovine β3 subunit is responsible for the increased effectiveness of this receptor. By engineering chimeric bovine-human β3subunits, we have shown that this increase in receptor efficiency is due to sequences encoding the C-terminal one-third of the subunit ectodomain, which contains a highly structured cysteine-rich repeat region. We postulate that amino acid sequence differences within this region may be responsible for structural differences between the human and bovine β3 subunit, leading to more efficient utilization of the bovine receptor by this bovine pathogen.


Sign in / Sign up

Export Citation Format

Share Document