Measurement of mass attenuation coefficients of moderate-to-high atomic-number elements at low photon energies

1995 ◽  
Vol 46 (2) ◽  
pp. 113-115 ◽  
Author(s):  
A.A. Tajuddin ◽  
C.S. Chong ◽  
A. Shukri ◽  
T. Bandyopadhyay ◽  
D.A. Bradley
2019 ◽  
Vol 107 (4) ◽  
pp. 339-348 ◽  
Author(s):  
Mohammed I. Sayyed ◽  
Ferdi Akman ◽  
Mustafa Recep Kaçal

Abstract Recently, technologists try to develop novel gamma radiation shielding materials instead of traditional materials such as lead and concrete with improved performance in gamma radiation shielding in medical applications and nuclear reactors. For this purpose, alloys such as stainless steel (SS) and carbon steel (CS) attracted much attention, these days. Preliminary results on such alloys have shown better attenuation of γ rays as compared to traditional shielding materials. This work aimed to conduct research on different alloy samples to evaluate their radiation attenuation efficiency and their suitability for radiation shielding when utilized in nuclear facilities. The mass attenuation coefficients for eight alloy samples were measured at different photon energies ranging from 80.997 to 1332.501 keV using transmission geometry. From the mass attenuation coefficients, different photon attenuation parameters such as half value layer, mean free path, effective atomic number, and radiation protection efficiency were evaluated. In addition, the equivalent atomic number and the exposure buildup factor were calculated using G-P fitting method for photon energy ranging from 0.015 MeV to 15 MeV at different penetration depth. The results showed that the Zeff values remain almost constant for all samples except W72/Cu28 in which the Zeff for this sample tends to decrease with the energy. The lowest value of half value layer is found for the alloy sample Ta97.5/W2.5 and the highest value is found for the alloy sample In50/Sn50. The Ta97.5/W2.5, Ta90/W10, Ta95/W5 samples demonstrated good radiation attenuation properties.


Kerntechnik ◽  
2017 ◽  
Vol 82 (3) ◽  
pp. 339-343 ◽  
Author(s):  
S. M. Vahabi ◽  
M. Bahreinipour ◽  
M. Shamsaie-Zafarghandi

2018 ◽  
Vol 48 (5) ◽  
pp. 330-335 ◽  
Author(s):  
Yves Ménesguen ◽  
Christophe Dulieu ◽  
Marie-Christine Lépy

2018 ◽  
Vol 107 (1) ◽  
pp. 83-93 ◽  
Author(s):  
Mohammed I. Sayyed ◽  
Ferdi Akman ◽  
Veysel Turan ◽  
Aslı Araz

Abstract The aim of the present work is to investigate the radiation absorption capacity of different soil samples in Turkey. For this purpose, we used a γ ray transmission geometry to measure the mass attenuation coefficients of eight soil samples collected between Bingöl city and Solhan district, Turkey at different γ-ray energies in the range of 13.94–88.04 keV. The radioactive sources utilized in the experiment were 241Am, 109Cd and 133Ba. FFAST and WinXCOM programs were used to evaluate the theoretical mass attenuation coefficients values of the selected soil samples. There is a good agreement between experimental and theoretical results. Additionally, the mass attenuation coefficients values used to evaluate different radiation shielding parameters such as effective atomic number, half value layer and mean free path. The variation of shielding parameters was examined for soil composition and photon energy. The obtained results revealed that S6 soil sample is the best soil in terms of shielding effectiveness among all the collected soils due to lower values for half value layer and mean free path. The effective removal cross-section (ΣR) of fast neutrons for the collected soils was also computed to examine neutrons shielding properties of the soil samples. It is found that the ΣR values for the soil samples are almost constant and lie within the range (0.04286–0.04949 cm−1).


Sign in / Sign up

Export Citation Format

Share Document