Photochemistry of textile azo dyes. Spectral characterization of excited state, reduced and oxidized forms of Acid Orange 7

1994 ◽  
Vol 83 (2) ◽  
pp. 141-146 ◽  
Author(s):  
K. Vinodgopal ◽  
Prashant V. Kamat
2006 ◽  
Vol 32 (1) ◽  
pp. 102-106 ◽  
Author(s):  
Rafet Kılınçarslan ◽  
Emin Erdem ◽  
Hasan Kocaokutgen

2017 ◽  
Vol 2017 ◽  
pp. 1-13 ◽  
Author(s):  
F. S. Freyria ◽  
S. Esposito ◽  
M. Armandi ◽  
F. Deorsola ◽  
E. Garrone ◽  
...  

The effect of both pH and surface oxidation of nanoparticles is studied on the interaction between a commercial slurry of Nanoscale Zerovalent Iron (NZVI) and the azo dye Acid Orange 7 (AO7). NZVI is a reducing agent used for the degradation of several pollutants, including azo dyes: during pollutant degradation, it undergoes progressive oxidation and dissolution. Though it is generally acknowledged that NZVI consists of core-shell nanoparticles, where the core of metallic iron is covered by FexOy shell, it still remains a poorly defined system. In this work, the solid fraction recovered by filtration and drying was characterized by means of XRD diffraction with Rietveld refinement, N2 isotherms at 77 K, FE-SEM and TEM observation, EDX analysis, and IR spectroscopy. Powders were obtained from both the parent slurry and the same slurry pretreated with HCl in order to remove FexOy shell, finally reactivating the nanoparticles. The aforementioned physicochemical characterization allowed figuring out some correlations between the properties of the studied nanomaterial and the processes occurring when it is in contact with AO7 in aqueous phase. The type of interaction occurring within the NZVI/AO7 system (adsorption and type of redox reactions) strongly depends not only on the pH of the starting solution, but also on the surface oxidation of the nanoparticles.


2006 ◽  
Vol 53 (11) ◽  
pp. 163-171 ◽  
Author(s):  
N. Yemashova ◽  
S. Kalyuzhnyi

Four selected azo dyes (acid orange 6, acid orange 7, methyl orange and methyl red) were completely decolourised in the presence of anaerobic granular sludge, while only methyl red was degraded in aerobic conditions using a conventional activated sludge. Additional experiments with culture broth devoid of cells showed that anaerobic decolourisation of azo dyes was performed by extracellular reducing agents produced by anaerobic bacteria. This was further confirmed by abiotic experiments with sulphide and NADH. The presence of redox mediators such as riboflavin led to dramatic acceleration of the anaerobic biodecolourisation process. The azo dye reduction products were found to be sulphanilic acid and 4-aminoresorcinol for acid orange 6; sulphanilic acid and 1-amino-2-naphthol for acid orange 7; N,N-dimethyl-1,4-phenylenediamine and sulphanilic acid for methyl orange; and N,N-dimethyl-1,4-phenylenediamine and anthranilic acid for methyl red. Anaerobic toxicity assays showed that the azo dyes were more toxic than their breakdown products (aromatic amines), except 1-amino-2-naphthol. In the presence of activated sludge, only anthranilic acid was completely mineralised while sulphanilic acid was persistent. 4-aminoresorcinol, 1-amino-2-naphthol and N,N-dimethyl-1,4-phenylenediamine underwent autooxidation in aerobic conditions yielding coloured polymeric products. On the contrary, in the presence of granular methanogenic sludge, 4-aminoresorcinol, 1-amino-2-naphthol and anthranilic acid were quantitatively methanised, sulphanilic acid was partially (70%) mineralised while N,N-dimethyl-1,4-phenylenediamine was only demethylated producing 1,4-phenylenediamine as an end product.


ChemInform ◽  
1987 ◽  
Vol 18 (19) ◽  
Author(s):  
W. THIEL ◽  
R. MAYER ◽  
E.-A. JAUER ◽  
H. MODROW ◽  
H. DOST

2021 ◽  
Vol 01 (03) ◽  
pp. 1-1
Author(s):  
Minato Nakamura ◽  
◽  
Yoshinori Murakami ◽  

The photocatalytic reaction involved in TiO<sub>2</sub> photocatalysis was investigated using a microreactor coated with TiO<sub>2</sub> film on the glass plate attached on one side of the microreactor. It was confirmed that the effect of H<sub>2</sub>O<sub>2</sub> on the photocatalytic degradation efficiency of azo dyes (acid orange 7, acid red 151, and acid yellow 23) was dependent on the polymorphs (anatase and rutile) of TiO<sub>2</sub> coated on the glass plate of the UV-irradiated microreactor. Scavengers of holes (KI) and electrons (p-benzoquinone) were added to the solution of azo dyes, and their effects on the degradation efficiencies of the azo dye (acid orange 7) in the microreactor system were investigated. It was found that the electron scavengers of p-benzoquinone showed much larger effects on the photocatalytic degradation efficiency than the hole scavengers of KI. Based on these results, the mechanism of the photocatalytic degradation of the azo dyes in the presence of H<sub>2</sub>O<sub>2</sub> was proposed.


2019 ◽  
Vol 159 ◽  
pp. 121-129
Author(s):  
M. Dosa ◽  
M. Piumetti ◽  
C. Galletti ◽  
N. Russo ◽  
D. Fino ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document