FINITE ELEMENT ANALYSIS OF ELASTIC–PLASTIC FIBROUS COMPOSITE STRUCTURES

Author(s):  
YEHIA A. BAHEI-EL-DIN ◽  
GEORGE J. DVORAK ◽  
SENOL UTKU
1981 ◽  
Vol 13 (1-3) ◽  
pp. 321-330 ◽  
Author(s):  
Yehia A. Bahei-El-Din ◽  
George J. Dvorak ◽  
Senol Utku

2015 ◽  
Vol 815 ◽  
pp. 49-53
Author(s):  
Nur Fitriah Isa ◽  
Mohd Zulham Affandi Mohd Zahid ◽  
Liyana Ahmad Sofri ◽  
Norrazman Zaiha Zainol ◽  
Muhammad Azizi Azizan ◽  
...  

In order to promote the efficient use of composite materials in civil engineering infrastructure, effort is being directed at the development of design criteria for composite structures. Insofar as design with regard to behavior is concerned, it is well known that a key step is to investigate the influence of geometric differences on the non-linear behavior of the panels. One possible approach is to use the validated numerical model based on the non-linear finite element analysis (FEA). The validation of the composite panel’s element using Trim-deck and Span-deck steel sheets under axial load shows that the present results have very good agreement with experimental references. The developed finite element (FE) models are found to reasonably simulate load-displacement response, stress condition, giving percentage of differences below than 15% compared to the experimental values. Trim-deck design provides better axial resistance than Span-deck. More concrete in between due to larger area of contact is the factor that contributes to its resistance.


2011 ◽  
Author(s):  
David Fornaro

Finite Element Analysis (FEA) is mature technology that has been in use for several decades as a tool to optimize structures for a wide variety of applications. Its application to composite structures is not new, however the technology for modeling and analyzing the behavior of composite structures continues to evolve on several fronts. This paper provides a review of the current state-of-the-art with regard to composites FEA, with a particular emphasis on applications to yacht structures. Topics covered are divided into three categories: Pre-processing; Postprocessing; and Non-linear Solutions. Pre-processing topics include meshing, ply properties, laminate definitions, element orientations, global ply tracking and load case development. Post-processing topics include principal stresses, failure indices and strength ratios. Nonlinear solution topics include progressive ply failure. Examples are included to highlight the application of advanced finite element analysis methodologies to the optimization of composite yacht structures.


Sign in / Sign up

Export Citation Format

Share Document