COMPUTER AIDED CONTROLLER DESIGN FOR A MULTIAXIAL SERVOHYDRAULIC VIBRATION TEST BENCH WITH LARGE PARAMETER UNCERTAINTIES

Author(s):  
A. Gräser ◽  
W. Neddermeyer ◽  
H. Tolle
Author(s):  
Kho Hie Kwee ◽  
Hardiansyah .

This paper addresses the design problem of robust H2 output feedback controller design for damping power system oscillations. Sufficient conditions for the existence of output feedback controllers with norm-bounded parameter uncertainties are given in terms of linear matrix inequalities (LMIs). Furthermore, a convex optimization problem with LMI constraints is formulated to design the output feedback controller which minimizes an upper bound on the worst-case H2 norm for a range of admissible plant perturbations. The technique is illustrated with applications to the design of stabilizer for a single-machine infinite-bus (SMIB) power system. The LMI based control ensures adequate damping for widely varying system operating.


2018 ◽  
Vol 10 (12) ◽  
pp. 168781401881536 ◽  
Author(s):  
Yong Zhou ◽  
Xiaogang Zhou

The reliable and repeatable experimental ground testing of aircraft actuator is an essential phase before flight testing. It is not an easy task to simulate the alternating aerodynamic forces on actuators reasonably and accurately in a laboratory. In this article, an experimental test bench is designed to simulate the aerodynamic forces by a hydraulic actuator, which replicates the operating conditions that the actuator will encounter in service. In order to improve the force control performance, a feed-forward compensator and a fuzzy proportional–integral–derivative controller are designed. Both simulation and experimental results show that the designed method can improve the control performance.


Author(s):  
Zhengrong Chu ◽  
Christine Wu ◽  
Nariman Sepehri

In this article, a new automated steering control method is presented for vehicle lane keeping. This method is a combination between the linear active disturbance rejection control and the quantitative feedback theory. The structure of the steering controller is first determined based on the linear active disturbance rejection control, then the controller is tuned in the framework of the quantitative feedback theory to meet the prescribed design specifications on sensitivity and closed-loop stability. The parameter uncertainties of the vehicle system are considered at the tuning stage. The proposed steering controller is simulated and tested on a scale vehicle. Both the simulation and experimental results demonstrate that the scale vehicle controlled by the proposed controller is able to perform the lane keeping. In the experiments, the lateral offset between the scale vehicle and the road centerline is regulated within the acceptable ranges of ±0.03 m during straight lane keeping and ±0.15 m during curved lane keeping. The proposed controller is easy to be implemented and is simple without requiring complex calculations and measurements of vehicle states. Simulations also show that the control method can be implemented on a full-scale vehicle.


Author(s):  
Lijun Han ◽  
Guoyuan Tang ◽  
Ruikun Xu ◽  
Hui Huang ◽  
De Xie

In this paper, a fractional integral sliding mode control (FISMC) strategy with a disturbance observer (DO) is proposed for the trajectory tracking problem of the underwater manipulator, under lumped disturbances namely parameter uncertainties and external disturbances. The modified fractional integral sliding mode surface (FISMS) is designed to guarantee the fast convergence of system states. The DO method and the second-order sliding mode control law are used in the controller design, in which the former is introduced to compensate the effect of the lumped disturbances. Also, a saturated function is selected to replace the sign function to attenuate the chattering phenomenon. The stability of the overall closed-loop system is proved via Lyapunov’s finite-time stability theory. Numerical simulations are performed on a 6 degree of freedom (DOF) underwater manipulator. Simulation results demonstrate that the proposed control scheme can achieve better tracking performance and stronger robustness against disturbances, by comparing with the DO-based PD control and the DO-based PID-type linear sliding mode control (SMC).


Sign in / Sign up

Export Citation Format

Share Document