HIGH-SPEED BIPROCESSOR CONFIGURATION FOR NUMERICAL AND ADAPTIVE CONTROL OF MACHINE TOOLS

Author(s):  
Th. Borangiu
1955 ◽  
Vol 34 (4) ◽  
pp. 224
Author(s):  
F.C. Cooke ◽  
S. Radcliffe ◽  
H.A. Chambers ◽  
C. Bromage ◽  
Menelaus ◽  
...  

2011 ◽  
Vol 383-390 ◽  
pp. 79-85
Author(s):  
Dong Yuan ◽  
Xiao Jun Ma ◽  
Wei Wei

Aiming at the problems such as switch impulsion, insurmountability for influence caused by nonlinearity in one tank gun control system which adopts double PID controller to realize the multimode switch control between high speed and low speed movement, the system math model is built up; And then, Model Reference Adaptive Control (MRAC) method based on nonroutine reference model is brought in and the adaptive gun controller is designed. Consequently, the compensation of nonlinearity and multimode control are implemented. Furthermore, the Tracking Differentiator (TD) is affiliated to the front of controller in order to restrain the impulsion caused by mode switch. Finally, the validity of control method in this paper is verified by simulation.


Author(s):  
Alptunc Comak ◽  
Orkun Ozsahin ◽  
Yusuf Altintas

High-speed machine tools have parts with both stationary and rotating dynamics. While spindle housing, column, and table have stationary dynamics, rotating parts may have both symmetric (i.e., spindle shaft and tool holder) and asymmetric dynamics (i.e., two-fluted end mill) due to uneven geometry in two principal directions. This paper presents a stability model of dynamic milling operations with combined stationary and rotating dynamics. The stationary modes are superposed to two orthogonal directions in rotating frame by considering the time- and speed-dependent, periodic dynamic milling system. The stability of the system is solved in both frequency and semidiscrete time domain. It is shown that the stability pockets differ significantly when the rotating dynamics of the asymmetric tools are considered. The proposed stability model has been experimentally validated in high-speed milling of an aluminum alloy with a two-fluted, asymmetric helical end mill.


Sign in / Sign up

Export Citation Format

Share Document