Multimode Adaptive Control for Tank Gun Control System Based on Tracking Differentiator

2011 ◽  
Vol 383-390 ◽  
pp. 79-85
Author(s):  
Dong Yuan ◽  
Xiao Jun Ma ◽  
Wei Wei

Aiming at the problems such as switch impulsion, insurmountability for influence caused by nonlinearity in one tank gun control system which adopts double PID controller to realize the multimode switch control between high speed and low speed movement, the system math model is built up; And then, Model Reference Adaptive Control (MRAC) method based on nonroutine reference model is brought in and the adaptive gun controller is designed. Consequently, the compensation of nonlinearity and multimode control are implemented. Furthermore, the Tracking Differentiator (TD) is affiliated to the front of controller in order to restrain the impulsion caused by mode switch. Finally, the validity of control method in this paper is verified by simulation.

Author(s):  
S¸ahin Yıldırım ◽  
I˙kbal Eski

This paper investigates a new robust model based neural controller for active suspension system’s vibrations via feedback control approach. The proposed model reference adaptive control system consists of a neural controller, a robust feedback controller, a third-order linear reference model and dynamics of active suspension system. The simulation examples with various standard input signals are included to demonstrate the effectiveness of the proposed control method and show significant improvement over the existing PID controller method. The robustness of the proposed neural controller is also analyzed with white noise disturbances on the suspension system. It is shown that the control system is robustly stable for all road disturbances. Finally, this kind of control approach could be employed in real time vehicle applications.


2017 ◽  
Vol 34 (7) ◽  
pp. 2154-2167 ◽  
Author(s):  
Haitao Qi ◽  
Zilong Liu ◽  
Yan Lang

Purpose The symmetrical valve is usually used in the hydraulic servo control system to control the asymmetrical cylinder, but this system’s structure involves asymmetry, and so its dynamic characteristics are asymmetrical, which causes issues in the control system of symmetric response. The purpose of this paper is to achieve the aim of symmetric control. Design/methodology/approach In this paper, the authors proposed a method that combined wavelet neural network (WNN) and model reference adaptive control. The reference model determined the dynamic response that the system was expected to achieve, and the WNN adaptive control made the system follow the reference model to achieve the purpose of symmetric control. Findings The experimental results show that the method can achieve a more accurate symmetric control and position control compared with the solutions via the classical PID control. Originality/value The proposed combination of the WNN and the reference model can effectively compensate for the asymmetry of dynamic response of the asymmetric cylinder in forward and return directions, which can be extended to deal with other classes of applications.


2020 ◽  
Vol 10 (1) ◽  
pp. 5186-5190
Author(s):  
B. Bourouba ◽  
S. Ladaci

In this study, a new non-integer indirect adaptive control method with reference model is suggested for the class of non-integer order systems. The objective of model reference control is to include the output of the given reference fractional model in tracking the output of a controlled plant by using the concept of on-line goal adaptation. The stability of the closed-loop system is analyzed via the Lyapunov method. Finally, Matlab simulation results are presented to illustrate the effectiveness of the proposed method of indirect fractional model reference adaptive control.


1991 ◽  
Vol 3 (6) ◽  
pp. 463-469 ◽  
Author(s):  
Toshiro Noritsugu ◽  
◽  
Tsutomu Wada ◽  
Toshiaki Asanoma ◽  
◽  
...  

One of the typical features of a pneumatic servo is a relatively high compliance due to air compressibility. This feature may be useful for constrained tasks such as deburring, polishing, and assisting humans, in which the relationship between position and force is important. If this relationship of a pneumatic servo becomes actively controllable, it can be effectively applied to these tasks. In order to control this relationship, an impedance control concept has recently been proposed. The impedance of the overall control system depends not only on the manipulator but also on the manipulated object of which the characteristics are usually unknown. Therefore, to attain the desired impedance over extensive operating conditions, an adaptive control strategy is required. This paper proposes an impedance control method of a pneumatic servo, using a position based approach, where an adaptive position control system is constructed inside the force feedback loop. The proposed method is applied to an experimental pneumatic servo system comprised of a pneumatic cylinder, electro-pneumatic proportional control valves, and a spring object. From the experiments, the following has been verified: 1) both static stiffness and dynamic impedance of the pneumatic servo system can be independently regulated by setting a desired reference model; 2) the impedance can be held constant with changes in system parameter such as object stiffness; and 3) the instability problem for the low stiffness setting can be overcome by setting high damping in the reference model. The proposed impedance control method may prove to be effective for both improving a pneumatic servo and developing its new applications.


Sign in / Sign up

Export Citation Format

Share Document