KNOWLEDGE BASED FUZZY MOTION CONTROL OF AUTONOMOUS VEHICLES

Author(s):  
C.J. Harris ◽  
A.B. Read
Sensors ◽  
2021 ◽  
Vol 21 (1) ◽  
pp. 297
Author(s):  
Ali Marzoughi ◽  
Andrey V. Savkin

We study problems of intercepting single and multiple invasive intruders on a boundary of a planar region by employing a team of autonomous unmanned surface vehicles. First, the problem of intercepting a single intruder has been studied and then the proposed strategy has been applied to intercepting multiple intruders on the region boundary. Based on the proposed decentralised motion control algorithm and decision making strategy, each autonomous vehicle intercepts any intruder, which tends to leave the region by detecting the most vulnerable point of the boundary. An efficient and simple mathematical rules based control algorithm for navigating the autonomous vehicles on the boundary of the see region is developed. The proposed algorithm is computationally simple and easily implementable in real life intruder interception applications. In this paper, we obtain necessary and sufficient conditions for the existence of a real-time solution to the considered problem of intruder interception. The effectiveness of the proposed method is confirmed by computer simulations with both single and multiple intruders.


2020 ◽  
Vol 56 (10) ◽  
pp. 127
Author(s):  
XIONG Lu ◽  
YANG Xing ◽  
ZHUO Guirong ◽  
LENG Bo ◽  
ZHANG Renxie

2019 ◽  
Vol 18 (6) ◽  
pp. 1510-1517
Author(s):  
Hongyang Xia ◽  
Jiqing Chen ◽  
Fengchong Lan ◽  
Zhaolin Liu

PAMM ◽  
2012 ◽  
Vol 12 (1) ◽  
pp. 733-734 ◽  
Author(s):  
Axel Hackbarth ◽  
Edwin Kreuzer ◽  
Andrew Gray

Author(s):  
Karumbu Meyyappan ◽  
Milena Vujosevic ◽  
Qifeng Wu ◽  
Pramod Malatkar ◽  
Charles Hill ◽  
...  

Electronic products used in autonomous vehicles can be subjected to harsh road conditions. Transportation induced vibration is one such reliability risk to be addressed as part of qualification. Vibration use data and reliability models are very extensively studied for fully packaged systems exposed to vibration risks during shipping. MIL-STD-810G and ISTA4AB are some of the industry standards that address these risks. On the other hand, USCAR-2 and GMW-3172 are couple of standards that may be more relevant for electronics used in automotive applications, where electronic components are exposed to vibration risks during their entire lifetime. Even though the usage model and duration for fully packaged systems in shipping and automotive electronics are different, the source of energy (road conditions), driving the risks are similar. The industry standards based damage model appear to be generic, covering a wide variety of products. In this paper, a knowledge based qualification (KBQ) framework, is used to map use conditions to accelerated test requirements for two failure modes: solder joint fatigue and socket contact fretting. The mechanisms chosen are distinct with different damage metric and drivers. The KBQ obtained qualification requirements were discussed relative to standard requirement with the objective to verify how well industry standard models reflect field reliability risks. For the chosen failure mechanisms and use condition data, it was observed that the industry standards lead to erroneous conclusions about vibration risk in the field.


Sensors ◽  
2020 ◽  
Vol 20 (21) ◽  
pp. 6052
Author(s):  
Xing Yang ◽  
Lu Xiong ◽  
Bo Leng ◽  
Dequan Zeng ◽  
Guirong Zhuo

As one of the core issues of autonomous vehicles, vehicle motion control directly affects vehicle safety and user experience. Therefore, it is expected to design a simple, reliable, and robust path following the controller that can handle complex situations. To deal with the longitudinal motion control problem, a speed tracking controller based on sliding mode control with nonlinear conditional integrator is proposed, and its stability is proved by the Lyapunov theory. Then, a linear parameter varying model predictive control (LPV-MPC) based lateral controller is formulated that the optimization problem is solved by CVXGEN. The nonlinear active disturbance rejection control (ADRC) method is applied to the second lateral controller that is easy to be implemented and robust to parametric uncertainties and disturbances, and the pure pursuit algorithm serves as a benchmark. Simulation results in different scenarios demonstrate the effectiveness of the proposed control schemes, and a comparison is made to highlight the advantages and drawbacks. It can be concluded that the LPV-MPC has some trouble to handle uncertainties while the nonlinear ADRC performs slight worse tracking but has strong robustness. With the parallel development of the control theory and computing power, robust MPC may be the future direction.


Sign in / Sign up

Export Citation Format

Share Document